Quantification of Citrullinated Histone H3 as a Marker for Neutrophil Extracellular Traps Correlated to Clinical Characteristics of Patients with Systemic Lupus Erythematosus
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Araki Y, Mimura T (2017) The histone modification code in the pathogenesis of autoimmune diseases. Mediators Inflamm 2017:2608605. https://doi.org/10.1155/2017/2608605ArakiYMimuraT2017The histone modification code in the pathogenesis of autoimmune diseasesMediators Inflamm20172608605https://doi.org/10.1155/2017/2608605Search in Google Scholar
Aringer M, Costenbader K, Daikh D et al. (2019) 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis 78:1151–1159. https://doi.org/10.1136/annrheumdis-2018-214819AringerMCostenbaderKDaikhD20192019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosusAnn Rheum Dis7811511159https://doi.org/10.1136/annrheumdis-2018-214819Search in Google Scholar
Bruggeman Y, Sodré FMC, Buitinga M et al. (2021) Targeting citrullination in autoimmunity: Insights learned from preclinical mouse models. Expert Opin Ther Targets 25:269–281. https://doi.org/10.1080/14728222.2021.1918104BruggemanYSodréFMCBuitingaM2021Targeting citrullination in autoimmunity: Insights learned from preclinical mouse modelsExpert Opin Ther Targets25269281https://doi.org/10.1080/14728222.2021.1918104Search in Google Scholar
Ceccarelli F, Govoni M, Piga M et al. (2022) Arthritis in systemic lupus erythematosus: From 2022 International GISEA/OEG Symposium. J Clin Med 11:6016. https://doi.org/10.3390/jcm11206016CeccarelliFGovoniMPigaM2022Arthritis in systemic lupus erythematosus: From 2022 International GISEA/OEG SymposiumJ Clin Med116016https://doi.org/10.3390/jcm11206016Search in Google Scholar
Chapman EA, Lyon M, Simpson D et al. (2019) Caught in a trap? Proteomic analysis of neutrophil extracellular traps in rheumatoid arthritis and systemic lupus erythematosus. Front Immunol 10:423. https://doi.org/10.3389/fimmu.2019.00423ChapmanEALyonMSimpsonD2019Caught in a trap? Proteomic analysis of neutrophil extracellular traps in rheumatoid arthritis and systemic lupus erythematosusFront Immunol10423https://doi.org/10.3389/fimmu.2019.00423Search in Google Scholar
Ciesielski O, Biesiekierska M, Panthu B et al. (2022) Citrullination in the pathology of inflammatory and autoimmune disorders: Recent advances and future perspectives. Cell Mol Life Sci 79:94. https://doi.org/10.1007/s00018-022-04126-3CiesielskiOBiesiekierskaMPanthuB2022Citrullination in the pathology of inflammatory and autoimmune disorders: Recent advances and future perspectivesCell Mol Life Sci7994https://doi.org/10.1007/s00018-022-04126-3Search in Google Scholar
Cortés-Hernández J, Ordi-Ros J, Labrador M et al. (2004) Antihistone and anti-double-stranded deoxyribonucleic acid antibodies are associated with renal disease in systemic lupus erythematosus. Am J Med 116:165–173. https://doi.org/10.1016/j.amjmed.2003.08.034Cortés-HernándezJOrdi-RosJLabradorM2004Antihistone and anti-double-stranded deoxyribonucleic acid antibodies are associated with renal disease in systemic lupus erythematosusAm J Med116165173https://doi.org/10.1016/j.amjmed.2003.08.034Search in Google Scholar
Dieker J, Berden JH, Bakker M et al. (2016) Autoantibodies against modified histone peptides in SLE patients are associated with disease activity and lupus nephritis. PLoS One 11:e0165373. https://doi.org/10.1371/journal.pone.0165373DiekerJBerdenJHBakkerM2016Autoantibodies against modified histone peptides in SLE patients are associated with disease activity and lupus nephritisPLoS One11e0165373https://doi.org/10.1371/journal.pone.0165373Search in Google Scholar
Eloranta ML, Alm GV, Rönnblom L (2013) Disease mechanisms in rheumatology – Tools and pathways: Plasmacytoid dendritic cells and their role in autoimmune rheumatic diseases. Arthritis Rheum 65:853–863. https://doi.org/10.1002/art.37821ElorantaMLAlmGVRönnblomL2013Disease mechanisms in rheumatology – Tools and pathways: Plasmacytoid dendritic cells and their role in autoimmune rheumatic diseasesArthritis Rheum65853863https://doi.org/10.1002/art.37821Search in Google Scholar
Farivar S, Shaabanpour Aghamaleki F (2018) Effects of major epigenetic factors on systemic lupus erythematosus. Iran Biomed J 22:294–302. https://doi.org/10.29252/ibj.22.5.294FarivarSShaabanpour AghamalekiF2018Effects of major epigenetic factors on systemic lupus erythematosusIran Biomed J22294302https://doi.org/10.29252/ibj.22.5.294Search in Google Scholar
Fresneda Alarcon M, McLaren Z, Wright HL (2021) Neutrophils in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus: Same foe different M.O. Front Immunol 12:649693. https://doi.org/10.3389/fimmu.2021.649693Fresneda AlarconMMcLarenZWrightHL2021Neutrophils in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus: Same foe different M.OFront Immunol12649693https://doi.org/10.3389/fimmu.2021.649693Search in Google Scholar
Garantziotis P, Nikolakis D, Doumas S et al. (2022) Molecular taxonomy of systemic lupus erythematosus through data-driven patient stratification: Molecular endotypes and cluster-tailored drugs. Front Immunol 13:860726. https://doi.org/10.3389/fimmu.2022.860726GarantziotisPNikolakisDDoumasS2022Molecular taxonomy of systemic lupus erythematosus through data-driven patient stratification: Molecular endotypes and cluster-tailored drugsFront Immunol13860726https://doi.org/10.3389/fimmu.2022.860726Search in Google Scholar
Gautam P, Sharma A, Bhatnagar A (2021) Global histone modification analysis reveals hypoacetylated H3 and H4 histones in B cells from systemic lupus erythematosus patients. Immunol Lett 240:41–45. https://doi.org/10.1016/j.imlet.2021.09.007GautamPSharmaABhatnagarA2021Global histone modification analysis reveals hypoacetylated H3 and H4 histones in B cells from systemic lupus erythematosus patientsImmunol Lett2404145https://doi.org/10.1016/j.imlet.2021.09.007Search in Google Scholar
Hakkim A, Fürnrohr BG, Amann K et al. (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A 107:9813–9818. https://doi.org/10.1073/pnas.0909927107HakkimAFürnrohrBGAmannK2010Impairment of neutrophil extracellular trap degradation is associated with lupus nephritisProc Natl Acad Sci U S A10798139818https://doi.org/10.1073/pnas.0909927107Search in Google Scholar
Hamam HJ, Palaniyar N (2019) Post-translational modifications in NETosis and NETs-mediated diseases. Biomolecules 9:369. https://doi.org/10.3390/biom9080369HamamHJPalaniyarN2019Post-translational modifications in NETosis and NETs-mediated diseasesBiomolecules9369https://doi.org/10.3390/biom9080369Search in Google Scholar
Hawro T, Bogucki A, Krupińska-Kun M et al. (2015) Intractable headaches, ischemic stroke, and seizures are linked to the presence of anti-β2GPI antibodies in patients with systemic lupus erythematosus. PLoS One 10:e0119911. https://doi.org/10.1371/journal.pone.0119911HawroTBoguckiAKrupińska-KunM2015Intractable headaches, ischemic stroke, and seizures are linked to the presence of anti-β2GPI antibodies in patients with systemic lupus erythematosusPLoS One10e0119911https://doi.org/10.1371/journal.pone.0119911Search in Google Scholar
Homa-Mlak I, Mazurek M, Majdan A et al. (2022) Serum calprotectin – A NET product – As a biomarker of disease activity in patients with systemic lupus erythematosus: A single-center case-control study from Poland. Med Sci Monit 28:e936534. https://doi.org/10.12659/MSM.936534Homa-MlakIMazurekMMajdanA2022Serum calprotectin – A NET product – As a biomarker of disease activity in patients with systemic lupus erythematosus: A single-center case-control study from PolandMed Sci Monit28e936534https://doi.org/10.12659/MSM.936534Search in Google Scholar
Hu N, Qiu X, Luo Y et al. (2008) Abnormal histone modification patterns in lupus CD4+ T cells. J Rheumatol 35:804–810.HuNQiuXLuoY2008Abnormal histone modification patterns in lupus CD4+ T cellsJ Rheumatol35804810Search in Google Scholar
Irure-Ventura J, López-Hoyos M (2022) Disease criteria of systemic lupus erythematosus (SLE); the potential role of non-criteria autoantibodies. J Transl Autoimmun 5:100143. https://doi.org/10.1016/j.jtauto.2022.100143Irure-VenturaJLópez-HoyosM2022Disease criteria of systemic lupus erythematosus (SLE); the potential role of non-criteria autoantibodiesJ Transl Autoimmun5100143https://doi.org/10.1016/j.jtauto.2022.100143Search in Google Scholar
Jeremic I, Djuric O, Nikolic M et al. (2019) Neutrophil extracellular traps-associated markers are elevated in patients with systemic lupus erythematosus. Rheumatol Int 39:1849–1857. https://doi.org/10.1007/s00296-019-04426-1JeremicIDjuricONikolicM2019Neutrophil extracellular traps-associated markers are elevated in patients with systemic lupus erythematosusRheumatol Int3918491857https://doi.org/10.1007/s00296-019-04426-1Search in Google Scholar
Kiriakidou M, Ching CL (2020) Systemic lupus erythematosus. Ann Intern Med 172:ITC81–ITC96. https://doi.org/10.7326/AITC202006020KiriakidouMChingCL2020Systemic lupus erythematosusAnn Intern Med172ITC81ITC96https://doi.org/10.7326/AITC202006020Search in Google Scholar
Koike H, Furukawa S, Mouri N et al. (2022) Early ultrastructural lesions of anti-neutrophil cytoplasmic antibody-versus complement-associated vasculitis. Neuropathology 42:420–429. https://doi.org/10.1111/neup.12821KoikeHFurukawaSMouriN2022Early ultrastructural lesions of anti-neutrophil cytoplasmic antibody-versus complement-associated vasculitisNeuropathology42420429https://doi.org/10.1111/neup.12821Search in Google Scholar
Lambers WM, Westra J, Bootsma H et al. (2021) From incomplete to complete systemic lupus erythematosus; a review of the predictive serological immune markers. Semin Arthritis Rheum 51:43–48. https://doi.org/10.1016/j.semarthrit.2020.11.006LambersWMWestraJBootsmaH2021From incomplete to complete systemic lupus erythematosus; a review of the predictive serological immune markersSemin Arthritis Rheum514348https://doi.org/10.1016/j.semarthrit.2020.11.006Search in Google Scholar
Leffler J, Martin M, Gullstrand B et al. (2012) Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol 188:3522–3531. https://doi.org/10.4049/jimmunol.1102404LefflerJMartinMGullstrandB2012Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the diseaseJ Immunol18835223531https://doi.org/10.4049/jimmunol.1102404Search in Google Scholar
Liu Y, Lightfoot YL, Seto N et al. (2018) Peptidylarginine deiminases 2 and 4 modulate innate and adaptive immune responses in TLR-7-dependent lupus. JCI Insight 3:e124729. https://doi.org/10.1172/jci.insight.124729LiuYLightfootYLSetoN2018Peptidylarginine deiminases 2 and 4 modulate innate and adaptive immune responses in TLR-7-dependent lupusJCI Insight3e124729https://doi.org/10.1172/jci.insight.124729Search in Google Scholar
Malik S, Bruner GR, Williams-Weese C et al. (2007) Presence of anti-La autoantibody is associated with a lower risk of nephritis and seizures in lupus patients. Lupus 16:863–866. https://doi.org/10.1177/0961203307083365MalikSBrunerGRWilliams-WeeseC2007Presence of anti-La autoantibody is associated with a lower risk of nephritis and seizures in lupus patientsLupus16863866https://doi.org/10.1177/0961203307083365Search in Google Scholar
Mansouri P, Mansouri P, Behmard E et al. (2024) Peptidylarginine deiminase (PAD): A promising target for chronic diseases treatment. Int J Biol Macromol 278:134576. https://doi.org/10.1016/j.ijbiomac.2024.134576MansouriPMansouriPBehmardE2024Peptidylarginine deiminase (PAD): A promising target for chronic diseases treatmentInt J Biol Macromol278134576https://doi.org/10.1016/j.ijbiomac.2024.134576Search in Google Scholar
Mazzone R, Zwergel C, Artico M et al. (2019) The emerging role of epigenetics in human autoimmune disorders. Clin Epigenetics 11:34. https://doi.org/10.1186/s13148-019-0632-2MazzoneRZwergelCArticoM2019The emerging role of epigenetics in human autoimmune disordersClin Epigenetics1134https://doi.org/10.1186/s13148-019-0632-2Search in Google Scholar
Nurbaeva KS, Reshetnyak TM, Cherkasova M et al. (2023) Citrullinated histone H3 in systemic lupus erythematosus and antiphospholipid syndrome (preliminary results). Modern Rheumatol J 17:19–27. https://doi.org/10.14412/1996-7012-2023-4-19-27NurbaevaKSReshetnyakTMCherkasovaM2023Citrullinated histone H3 in systemic lupus erythematosus and antiphospholipid syndrome (preliminary results)Modern Rheumatol J171927https://doi.org/10.14412/1996-7012-2023-4-19-27Search in Google Scholar
Ohl K, Tenbrock K (2015) Regulatory T cells in systemic lupus erythematosus. Eur J Immunol 45:344–355. https://doi.org/10.1002/eji.201344280OhlKTenbrockK2015Regulatory T cells in systemic lupus erythematosusEur J Immunol45344355https://doi.org/10.1002/eji.201344280Search in Google Scholar
Pieterse E, Hofstra J, Berden J et al. (2015) Acetylated histones contribute to the immunostimulatory potential of neutrophil extracellular traps in systemic lupus erythematosus. Clin Exp Immunol 179:68–74. https://doi.org/10.1111/cei.12359PieterseEHofstraJBerdenJ2015Acetylated histones contribute to the immunostimulatory potential of neutrophil extracellular traps in systemic lupus erythematosusClin Exp Immunol1796874https://doi.org/10.1111/cei.12359Search in Google Scholar
Pisetsky DS (2020) Evolving story of autoantibodies in systemic lupus erythematosus. J Autoimmun 110:102356. https://doi.org/10.1016/j.jaut.2019.102356PisetskyDS2020Evolving story of autoantibodies in systemic lupus erythematosusJ Autoimmun110102356https://doi.org/10.1016/j.jaut.2019.102356Search in Google Scholar
Price JV, Tangsombatvisit S, Xu G et al. (2012) On silico peptide microarrays for high-resolution mapping of antibody epitopes and diverse protein–protein interactions. Nat Med 18:1434–1440. https://doi.org/10.1038/nm.2913PriceJVTangsombatvisitSXuG2012On silico peptide microarrays for high-resolution mapping of antibody epitopes and diverse protein–protein interactionsNat Med1814341440https://doi.org/10.1038/nm.2913Search in Google Scholar
Qaddoori Y, Abrams ST, Mould P et al. (2018) Extracellular histones inhibit complement activation through interacting with complement component 4. J Immunol 200:4125–4133. https://doi.org/10.4049/jimmunol.1700779QaddooriYAbramsSTMouldP2018Extracellular histones inhibit complement activation through interacting with complement component 4J Immunol20041254133https://doi.org/10.4049/jimmunol.1700779Search in Google Scholar
Relle M, Foehr B, Schwarting A (2015) Epigenetic aspects of systemic lupus erythematosus. Rheumatol Ther 2:33–46. https://doi.org/10.1007/s40744-015-0014-yRelleMFoehrBSchwartingA2015Epigenetic aspects of systemic lupus erythematosusRheumatol Ther23346https://doi.org/10.1007/s40744-015-0014-ySearch in Google Scholar
Rivas-Larrauri F, Yamazaki-Nakashimada MA (2016) Systemic lupus erythematosus: Is it one disease? Reumatol Clin 12:274–281. https://doi.org/10.1016/j.reuma.2016.01.005Rivas-LarrauriFYamazaki-NakashimadaMA2016Systemic lupus erythematosus: Is it one disease?Reumatol Clin12274281https://doi.org/10.1016/j.reuma.2016.01.005Search in Google Scholar
Rodriguez-Hernandez A, Ortiz-Orendain J, Alvarez-Palazuelos LE et al. (2021) Seizures in systemic lupus erythematosus: A scoping review. Seizure 86:161–167. https://doi.org/10.1016/j.seizure.2021.02.021Rodriguez-HernandezAOrtiz-OrendainJAlvarez-PalazuelosLE2021Seizures in systemic lupus erythematosus: A scoping reviewSeizure86161167https://doi.org/10.1016/j.seizure.2021.02.021Search in Google Scholar
Ronchetti L, Terrenato I, Ferretti M et al. (2022) Circulating cell free DNA and citrullinated histone H3 as useful biomarkers of NETosis in endometrial cancer. J Exp Clin Cancer Res 41:151. https://doi.org/10.1186/s13046-022-02359-5RonchettiLTerrenatoIFerrettiM2022Circulating cell free DNA and citrullinated histone H3 as useful biomarkers of NETosis in endometrial cancerJ Exp Clin Cancer Res41151https://doi.org/10.1186/s13046-022-02359-5Search in Google Scholar
Saisorn W, Saithong S, Phuengmaung P et al. (2021) Acute kidney injury induced lupus exacerbation through the enhanced neutrophil extracellular traps (and apoptosis) in Fcgr2b deficient lupus mice with renal ischemia reperfusion injury. Front Immunol 12:669162. https://doi.org/10.3389/fimmu.2021.669162SaisornWSaithongSPhuengmaungP2021Acute kidney injury induced lupus exacerbation through the enhanced neutrophil extracellular traps (and apoptosis) in Fcgr2b deficient lupus mice with renal ischemia reperfusion injuryFront Immunol12669162https://doi.org/10.3389/fimmu.2021.669162Search in Google Scholar
Salemme R, Peralta LN, Meka SH et al. (2019) The role of NETosis in systemic lupus erythematosus. J Cell Immunol 1:33–42. https://doi.org/10.33696/immunology.1.008SalemmeRPeraltaLNMekaSH2019The role of NETosis in systemic lupus erythematosusJ Cell Immunol13342https://doi.org/10.33696/immunology.1.008Search in Google Scholar
Samotij D (2018) Treatment of systemic lupus erythematosus – Future challenges and prospects. Forum Dermatol 4:70–77.SamotijD2018Treatment of systemic lupus erythematosus – Future challenges and prospectsForum Dermatol47077Search in Google Scholar
Sandling JK, Pucholt P, Hultin Rosenberg L et al. (2021) Molecular pathways in patients with systemic lupus erythematosus revealed by gene-centred DNA sequencing. Ann Rheum Dis 80:109–117. https://doi.org/10.1136/annrheumdis-2020-218636SandlingJKPucholtPHultin RosenbergL2021Molecular pathways in patients with systemic lupus erythematosus revealed by gene-centred DNA sequencingAnn Rheum Dis80109117https://doi.org/10.1136/annrheumdis-2020-218636Search in Google Scholar
Senda A, Sasai R, Kato K et al. (2022) Involvement of neutrophil extracellular traps in the pathogenesis of glomerulonephritis in a case of systemic lupus erythematosus and antineutrophil cytoplasmic antibody-associated vasculitis overlap syndrome. CEN Case Rep 11:339–346. https://doi.org/10.1007/s13730-021-00682-ySendaASasaiRKatoK2022Involvement of neutrophil extracellular traps in the pathogenesis of glomerulonephritis in a case of systemic lupus erythematosus and antineutrophil cytoplasmic antibody-associated vasculitis overlap syndromeCEN Case Rep11339346https://doi.org/10.1007/s13730-021-00682-ySearch in Google Scholar
Shang X, Ren L, Sun G et al. (2021) Anti-dsDNA, anti-nucleosome, anti-C1q, and anti-histone antibodies as markers of active lupus nephritis and systemic lupus erythematosus disease activity. Immun Inflamm Dis 9:407–418. https://doi.org/10.1002/iid3.401ShangXRenLSunG2021Anti-dsDNA, anti-nucleosome, anti-C1q, and anti-histone antibodies as markers of active lupus nephritis and systemic lupus erythematosus disease activityImmun Inflamm Dis9407418https://doi.org/10.1002/iid3.401Search in Google Scholar
Sharma P, Azebi S, England P et al. (2012) Citrullination of histone H3 interferes with HP1-mediated transcriptional repression. PLoS Genet 8:e1002934. https://doi.org/10.1371/journal.pgen.1002934SharmaPAzebiSEnglandP2012Citrullination of histone H3 interferes with HP1-mediated transcriptional repressionPLoS Genet8e1002934https://doi.org/10.1371/journal.pgen.1002934Search in Google Scholar
Sim TM, Mak A, Ta SH (2022) Insights into the role of neutrophils in neuropsychiatric systemic lupus erythematosus: Current understanding and future directions. Front Immunol 13:957303. https://doi.org/10.3389/fimmu.2022.957303SimTMMakATaSH2022Insights into the role of neutrophils in neuropsychiatric systemic lupus erythematosus: Current understanding and future directionsFront Immunol13957303https://doi.org/10.3389/fimmu.2022.957303Search in Google Scholar
van der Vlag J, Berden JH (2011) Lupus nephritis: Role of antinucleosome autoantibodies. Semin Nephrol 31:376–389. https://doi.org/10.1016/j.semnephrol.2011.06.009van der VlagJBerdenJH2011Lupus nephritis: Role of antinucleosome autoantibodiesSemin Nephrol31376389https://doi.org/10.1016/j.semnephrol.2011.06.009Search in Google Scholar
Wannberg F, Hjalmar V, Ng H et al. (2024) Plasma H3Cit-DNA discriminates between cancer and inflammation in a cohort of patients with unspecific cancer symptoms. Inflammation. https://doi.org/10.1007/s10753-024-02085-4WannbergFHjalmarVNgH2024Plasma H3Cit-DNA discriminates between cancer and inflammation in a cohort of patients with unspecific cancer symptomsInflammationhttps://doi.org/10.1007/s10753-024-02085-4Search in Google Scholar
Weinstein A, Alexander RV, Zack DJ (2021) A review of complement activation in SLE. Curr Rheumatol Rep 23:16. https://doi.org/10.1007/s11926-021-00984-1WeinsteinAAlexanderRVZackDJ2021A review of complement activation in SLECurr Rheumatol Rep2316https://doi.org/10.1007/s11926-021-00984-1Search in Google Scholar
Zhou Y, Qiu X, Luo Y et al. (2011) Histone modifications and methyl-CpG-binding domain protein levels at the TNFSF7 (CD70) promoter in SLE CD4+ T cells. Lupus 20:1365–1371. https://doi.org/10.1177/0961203311413412ZhouYQiuXLuoY2011Histone modifications and methyl-CpG-binding domain protein levels at the TNFSF7 (CD70) promoter in SLE CD4+ T cellsLupus2013651371https://doi.org/10.1177/0961203311413412Search in Google Scholar