Accesso libero

Differentiation of the Composition of Combined Soil-Tillage Machines depending on the Conditions of Use

, , , , ,  e   
23 dic 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Abo Al-kheer, A., Eid, M., Aoues, Y., El-Hami, A.,Kharmanda, M. G., & Mouazen, A. M. (2011). Theoreticalanalysis of the spatial variability in tillage forces for fatigueanalysis of tillage machines. Journal of Terramechanics, 48(4), 285-295. https://doi.org/10.1016/j.jterra.2011.05.002Search in Google Scholar

Abo Al-kheer, A., El-Hami, A., Kharmanda, M. G., & Mouazen, A. M. (2010). Reliability-based design for soil tillage machines. Journal of Terramechanics, 48(1), 57-64. https://doi.org/10.1016/j.jterra.2010.06.001.Search in Google Scholar

Almaliki, S. (2018). Simulation of draft force for three types of plow using response surface method under various field conditions. The Iraqi Journal of Agricultural Sciences, 49(6), 1123-1124. https://doi.org/10.36103/ijas.v49i6.151.Search in Google Scholar

Azimi-Nejadian, H., Karparvarfard, S. H., Naderi-Boldaji, M., & Rahmanian-Koushkaki, H. (2019). Combined finite element and statistical models for predicting force components on a cylindrical mouldboard plough. Biosystems Engineering, 186, 168-181. https://doi.org/10.1016/j.biosystemseng.2019.07.007.Search in Google Scholar

Azizi, A., Gilandeh, Y. A., Mesri-Gundoshmian, T., Saleh-Bigdeli, A. A., & Moghaddam, H. A. (2020). Classification of soil aggregates: A novel approach based on deep learning. Soil and Tillage Research, 199, 104586. https://doi.org/10.1016/j.still.2020.104586.Search in Google Scholar

Celik, H. K., Caglayan, N., Topakci, M., Rennie, A. E. W., & Akinci, I. (2020). Strength-based design analysis of a Para-Plow tillage tool. Computers and Electronics in Agriculture, 169, 105168. https://doi.org/10.1016/j.compag.2019.105168.Search in Google Scholar

Chirende, B., Li, J. Q., & Vheremu, W. (2019). Application of finite element analysis in modeling of bionic harrowing discs. Biomimetics, 4(3), 61. https://doi.org/10.3390/biomimetics4030061.Search in Google Scholar

Ebrahimi, R., Mirdamadi, H. R., & Ziaei-Rad, S. (2018). Operational modal analysis and fatigue life estimation of a chisel plow arm under soil-induced random excitations. Measurement, 116, 451-457. https://doi.org/10.1016/j.measurement.2017.11.020.Search in Google Scholar

He, C., You, Y., Wang, D., & Wu, H. (2018). Estimating soil failure due to torsion via vane shear test by varying vane diameter and soil properties. Soil and Tillage Research, 177, 68-78. https://doi.org/10.1016/j.still.2017.12.004.Search in Google Scholar

Jiang, X., Tong, J., Ma, Y., & Sun, J. (2020). Development and verification of a mathematical model for the specific resistance of a curved subsoiler. Biosystems Engineering, 190, 107-119. https://doi.org/10.1016/j.biosystemseng.2019.12.004.Search in Google Scholar

Jirigalantu, Li, X., Mi, X., Liu, K., & Tang, Y. (2017). Development of a parameterized mechanical model of a chisel-edge grating ruling tool. Precision Engineering, 50, 388-392. https://doi.org/10.1016/j.precisioneng.2017.06.013Search in Google Scholar

Karaiev O., Bondarenko L., Halko S., Miroshnyk O., Vershkov O., Karaieva T., Shchur T Findura P.,& Prístavka M. (2021). Mathematical modelling of the fruit-stone culture seeds calibration process using flat sieves. Acta Technologica Agriculturae, 24(3), 119-123. https://doi.org/10.2478/ata-2021-0020Search in Google Scholar

Leschenko, S. (2014). Experimental estimate of the efficiency of basic tilling by chisel equipment in the conditions of soil. In Design, production and operation of agricultural machines. All-state interdepartmental scientific and technical collection. Eds Sergey Leschenko, Vasil Salo, Dmitry Petrenko. Kirovohrad, UA.Search in Google Scholar

Leshchenko, S., Salo, V., Vasylkovskyy, A. (2014). Situation and prospect of intensifying the work of chisel tools to preserve the natural fertility. MOTROL, 16(2), 195-201.Search in Google Scholar

Lezhenkin O., Halko, S., Miroshnyk O., Vershkov O., Lezhenkin I., Suprun O., Shchur T., Kruszelnicka W., & Kasner, R. (2021). Investigation of the separation of combed heap of winter wheat. Journal of Physics: Conference Series, 1781(1), 012016. https://doi.org/10.1088/1742-6596/1781/1/012016.Search in Google Scholar

Prem, M., Swarnkar, R., Kantilal, V. D. K., Jeetsinh, P. S. K., & Chitharbhai, K. B. (2016). Combined tillage tools-a review. Current Agriculture Research Journal, 4(2), 179. http://dx.doi.org/10.12944/CARJ.4.2.07.Search in Google Scholar

Ranjbar, I., Rashidi, M., Najjarzadeh, I., Niazkhani, A., & Niyazadeh, M. (2013). Modeling of moldboard plow draft force based on tillage depth and operation speed. Middle-East Journal of Scientific Research, 17(7), 891-897. https://doi.org/10.5829/idosi.mejsr.2013.17.07.12232.Search in Google Scholar

Renon, N., Montmitonnet, P., & Laborde, P. (2005). Numerical formulation for solving soil/tool interaction problem involving large deformation. Engineering Computations, 22(1), 87-109. https://doi.org/10.1108/02644400510572424Search in Google Scholar

Van Capelle C., Schrader S., & Brunotte J. (2012). Tillage-induced changes in the functional diversity of soil biota – A review with a focus on Germandata. European Journal of Soil Biology, 50, 165–181.Search in Google Scholar

Vasylkovska K.V., Leshchenko S.M., Vasylkovskyi O.M., & Petrenko D.I. (2016) Improvement of equipment for basic tillage and sowing as initial stage of harvest forecasting. INMATEH – Agricultural Engineering, 50(3), 13-20.Search in Google Scholar

Zeng, Z., Chen, Y., & Zhang, X. (2017). Modelling the interaction of a deep tillage tool with heterogeneous soil. Computers and Electronics in Agriculture, 143, 130-138. https://doi.org/10.1016/J.COMPAG.2017.10.005.Search in Google Scholar

Zeng, Z., Ma, X., Chen, Y., & Qi, L. (2020). Modelling residue incorporation of selected chisel ploughing tools using the discrete element method (DEM). Soil and Tillage Research, 197, 104505. https://doi.org/10.1016/j.still.2019.104505.Search in Google Scholar