[Abo Al-kheer, A., Eid, M., Aoues, Y., El-Hami, A.,Kharmanda, M. G., & Mouazen, A. M. (2011). Theoreticalanalysis of the spatial variability in tillage forces for fatigueanalysis of tillage machines. Journal of Terramechanics, 48(4), 285-295. https://doi.org/10.1016/j.jterra.2011.05.002]Search in Google Scholar
[Abo Al-kheer, A., El-Hami, A., Kharmanda, M. G., & Mouazen, A. M. (2010). Reliability-based design for soil tillage machines. Journal of Terramechanics, 48(1), 57-64. https://doi.org/10.1016/j.jterra.2010.06.001.]Search in Google Scholar
[Almaliki, S. (2018). Simulation of draft force for three types of plow using response surface method under various field conditions. The Iraqi Journal of Agricultural Sciences, 49(6), 1123-1124. https://doi.org/10.36103/ijas.v49i6.151.]Search in Google Scholar
[Azimi-Nejadian, H., Karparvarfard, S. H., Naderi-Boldaji, M., & Rahmanian-Koushkaki, H. (2019). Combined finite element and statistical models for predicting force components on a cylindrical mouldboard plough. Biosystems Engineering, 186, 168-181. https://doi.org/10.1016/j.biosystemseng.2019.07.007.]Search in Google Scholar
[Azizi, A., Gilandeh, Y. A., Mesri-Gundoshmian, T., Saleh-Bigdeli, A. A., & Moghaddam, H. A. (2020). Classification of soil aggregates: A novel approach based on deep learning. Soil and Tillage Research, 199, 104586. https://doi.org/10.1016/j.still.2020.104586.]Search in Google Scholar
[Celik, H. K., Caglayan, N., Topakci, M., Rennie, A. E. W., & Akinci, I. (2020). Strength-based design analysis of a Para-Plow tillage tool. Computers and Electronics in Agriculture, 169, 105168. https://doi.org/10.1016/j.compag.2019.105168.]Search in Google Scholar
[Chirende, B., Li, J. Q., & Vheremu, W. (2019). Application of finite element analysis in modeling of bionic harrowing discs. Biomimetics, 4(3), 61. https://doi.org/10.3390/biomimetics4030061.]Search in Google Scholar
[Ebrahimi, R., Mirdamadi, H. R., & Ziaei-Rad, S. (2018). Operational modal analysis and fatigue life estimation of a chisel plow arm under soil-induced random excitations. Measurement, 116, 451-457. https://doi.org/10.1016/j.measurement.2017.11.020.]Search in Google Scholar
[He, C., You, Y., Wang, D., & Wu, H. (2018). Estimating soil failure due to torsion via vane shear test by varying vane diameter and soil properties. Soil and Tillage Research, 177, 68-78. https://doi.org/10.1016/j.still.2017.12.004.]Search in Google Scholar
[Jiang, X., Tong, J., Ma, Y., & Sun, J. (2020). Development and verification of a mathematical model for the specific resistance of a curved subsoiler. Biosystems Engineering, 190, 107-119. https://doi.org/10.1016/j.biosystemseng.2019.12.004.]Search in Google Scholar
[Jirigalantu, Li, X., Mi, X., Liu, K., & Tang, Y. (2017). Development of a parameterized mechanical model of a chisel-edge grating ruling tool. Precision Engineering, 50, 388-392. https://doi.org/10.1016/j.precisioneng.2017.06.013]Search in Google Scholar
[Karaiev O., Bondarenko L., Halko S., Miroshnyk O., Vershkov O., Karaieva T., Shchur T Findura P.,& Prístavka M. (2021). Mathematical modelling of the fruit-stone culture seeds calibration process using flat sieves. Acta Technologica Agriculturae, 24(3), 119-123. https://doi.org/10.2478/ata-2021-0020]Search in Google Scholar
[Leschenko, S. (2014). Experimental estimate of the efficiency of basic tilling by chisel equipment in the conditions of soil. In Design, production and operation of agricultural machines. All-state interdepartmental scientific and technical collection. Eds Sergey Leschenko, Vasil Salo, Dmitry Petrenko. Kirovohrad, UA.]Search in Google Scholar
[Leshchenko, S., Salo, V., Vasylkovskyy, A. (2014). Situation and prospect of intensifying the work of chisel tools to preserve the natural fertility. MOTROL, 16(2), 195-201.]Search in Google Scholar
[Lezhenkin O., Halko, S., Miroshnyk O., Vershkov O., Lezhenkin I., Suprun O., Shchur T., Kruszelnicka W., & Kasner, R. (2021). Investigation of the separation of combed heap of winter wheat. Journal of Physics: Conference Series, 1781(1), 012016. https://doi.org/10.1088/1742-6596/1781/1/012016.]Search in Google Scholar
[Prem, M., Swarnkar, R., Kantilal, V. D. K., Jeetsinh, P. S. K., & Chitharbhai, K. B. (2016). Combined tillage tools-a review. Current Agriculture Research Journal, 4(2), 179. http://dx.doi.org/10.12944/CARJ.4.2.07.]Search in Google Scholar
[Ranjbar, I., Rashidi, M., Najjarzadeh, I., Niazkhani, A., & Niyazadeh, M. (2013). Modeling of moldboard plow draft force based on tillage depth and operation speed. Middle-East Journal of Scientific Research, 17(7), 891-897. https://doi.org/10.5829/idosi.mejsr.2013.17.07.12232.]Search in Google Scholar
[Renon, N., Montmitonnet, P., & Laborde, P. (2005). Numerical formulation for solving soil/tool interaction problem involving large deformation. Engineering Computations, 22(1), 87-109. https://doi.org/10.1108/02644400510572424]Search in Google Scholar
[Van Capelle C., Schrader S., & Brunotte J. (2012). Tillage-induced changes in the functional diversity of soil biota – A review with a focus on Germandata. European Journal of Soil Biology, 50, 165–181.]Search in Google Scholar
[Vasylkovska K.V., Leshchenko S.M., Vasylkovskyi O.M., & Petrenko D.I. (2016) Improvement of equipment for basic tillage and sowing as initial stage of harvest forecasting. INMATEH – Agricultural Engineering, 50(3), 13-20.]Search in Google Scholar
[Zeng, Z., Chen, Y., & Zhang, X. (2017). Modelling the interaction of a deep tillage tool with heterogeneous soil. Computers and Electronics in Agriculture, 143, 130-138. https://doi.org/10.1016/J.COMPAG.2017.10.005.]Search in Google Scholar
[Zeng, Z., Ma, X., Chen, Y., & Qi, L. (2020). Modelling residue incorporation of selected chisel ploughing tools using the discrete element method (DEM). Soil and Tillage Research, 197, 104505. https://doi.org/10.1016/j.still.2019.104505.]Search in Google Scholar