[
Adams, M. J. and Antoniw, J. F. 2005. DPVweb: an open access internet resource on plant viruses and virus diseases. Outlooks on Pest Management, 16, 268 ‒ 270.
]Search in Google Scholar
[
Avasare, V., Zhang, Z., Avasare, D., Khan, I., and Qurashi, A. (2015). Room-temperature synthesis of TiO2 nanospheres and their solar driven photoelectrochemical hydrogen production. International Journal of Energy Research, 39(12), 1714 ‒ 1719. DOI: 10.1002/er.3372.
]Apri DOISearch in Google Scholar
[
Averre, C. W. and Gooding (2000). Virus diseases of greenhouse tomato and their mangment. Available at: http://www.cesncsu.edu/depts./pp/notes/oldnites/vg15.htm.
]Search in Google Scholar
[
Bradamante, G., Mittelsten, S. O. and Incarbone, M. (2021). Under siege: virus control in plant meristems and progeny. Plant Cell, 33(8), 2523 – 2537. DOI: 10.1093/plcell/koab140.840845334015140
]Apri DOISearch in Google Scholar
[
Bragard, C., Caciagli, P., Lemaire, O., Lopez-Moya, J. J., Mac- Farlane, S., Peters, D., Susi, P., and Torrance, L. (2013). Status and prospects of plant virus control through interference with vector transmission. Annual Review of Phytopathology, 51(1), 177 – 201. DOI: 10.1146/annurev-phyto-082712-102346.23663003
]Apri DOISearch in Google Scholar
[
Cao, Y., Zhou, H., Zhou, X., and Li, F. (2020). Control of plant viruses by CRISPR/Cas system-mediated adaptive immunity. Frontiers in Microbiology, 11, 1 ‒ 9. DOI: 10.3389/fmicb.2020.593700.764927233193268
]Apri DOISearch in Google Scholar
[
Cobos, A., Montes, N., López-Herranz, M., Gil-Valle, M., and Pagán, I. (2019). Within-host multiplication and speed of colonization as infection traits associated with plant virus vertical transmission. Journal of Virology, 93(23), 1078 – 19. DOI: 10.1128/jvi.01078-19.685448031511374
]Apri DOISearch in Google Scholar
[
Constable, F., Daly A., Terras M. A., Penrose L., and Dall, D. (2018). Detection in Australia of cucumber green mottle mosaic virus in seed lots of cucurbit crops. Australian Plant Disease, Notes, 13(1), 18p. DOI:10.1007/s13314-018-0302-9.
]Apri DOISearch in Google Scholar
[
Cordero, T., Mohamed, M. A., Lopez-Moya, J. J., and Daròs, J. A. (2017). A recombinant potato virus y infectious clone tagged with the rosea1 visual marker (pvy-ros1) facilitates the analysis of viral infectivity and allows the production of large amounts of anthocyanins in plants. Frontiers in Microbiology, 8(611), 1 ‒ 11. DOI: 10.3389/fmicb.2017.00611.538221528428782
]Apri DOISearch in Google Scholar
[
Dombrovsky, A., Tran-Nguyen, L. T. T. and Jones R. A. C. (2017). Cucumber green mottle mosaic virus: Rapidly increasing global distribution, etiology, epidemiology, and management. Annual Review of Phytopathoogy, 55, 231 – 256. DOI: 10.1146/annurev-phyto-080516-035349.28590876
]Apri DOISearch in Google Scholar
[
Elbeshehy, E. K., Elazzazy, A. M. and Aggelis, G. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Frontiers in Microbiology, 6, 453. DOI: 10.3389%2Ffmicb.2015.00453.
]Apri DOISearch in Google Scholar
[
Garcia-Doval, C. and Jinek, M. (2017). Molecular architectures and mechanisms of Class 2 CRISPR-associated nucleases. Current Opinion in Structural Biology, 47, 157 – 166. DOI: 10.1016/j.sbi.2017.10.015.29107822
]Apri DOISearch in Google Scholar
[
Gooding, J. R. and Suggs, E. G. (1976). Seed borne tobacco mosaic virus in commercial sources of tomato seed. In Plant Dissease Report, 60, 441 ‒ 442.
]Search in Google Scholar
[
Golobič, M., Jemec, A., Drobne, D., Romih, T., Kasemets, K., and Kahru, A. (2012). Upon exposure to Cu nanoparticles, accumulation of copper in the isopod Porcellio scaber is due to the dissolved Cu ions inside the digestive tract. Environmental science & technology, 46(21), 12112 ‒ 12119. DOI: 10.1021/es3022182.23046103
]Apri DOISearch in Google Scholar
[
Hadidi, A., Flores, R., Candresse, T., and Barba, M. (2016). Next-generation sequencing and genome editing in plant virology. Frontiers in Microbiology, 7(1325), 1 ‒ 12. DOI: 10.3389/fmicb.2016.01325.499943527617007
]Apri DOISearch in Google Scholar
[
Hao, Y., Cao, X., Ma, C., Zhang, Z., Zhao, N., Ali, A., and Rui, Y. (2017). Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Frontiers in Plant Science, 8 (1332), 1‒9. DOI: 10.3389/fpls.2017.01332.553909228824670
]Apri DOISearch in Google Scholar
[
Hipper, C., Brault, V., Ziegler-Graff, V., and Revers, F. (2013). Viral and cellular factors involved in phloem transport of Plant Viruses. Frontiers in Plant Science, 4(154), 1 ‒ 25. DOI: 10.3389/fpls.2013.00154.366287523745125
]Apri DOISearch in Google Scholar
[
Hogenhout, S. A., Ammar, E. D., Whitfield, A. E., and Redinbaugh, M. G. (2008). Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 46, 327 – 359. DOI: 10.1146/annurev.phyto.022508.092135.18680428
]Apri DOISearch in Google Scholar
[
Hrudova, E., Pokorny, R. and Vichova, J. (2006). Integrated Plant Protection. 1 st ed. Brno: Mendel University of Agriculture and Forestry in Brno. 151p. (in Czech).
]Search in Google Scholar
[
Hsu, P., Scott, D., Weinstein, J., Ran, F., Konermann, S., Agarwala, V., et al. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31(9), 827 – 832. doi :10.1038/nbt.2647.396985823873081
]Apri DOISearch in Google Scholar
[
Hull, R. (2014). Chapter 12 ‒ plant to plant movement. In Hull, R. (Ed.) Plant Virology, fifth ed. Academic Press, Boston. pp. 669 – 751.
]Search in Google Scholar
[
International Committee on Taxonomy of Viruses Executive Committee (2020). The new scope of virus taxonomy: Partitioning the virosphere into 15 hierarchical ranks. Nature Microbiology, 5, 668 – 674. DOI: 10.1038/s41564-020-0709-x.718621632341570
]Apri DOISearch in Google Scholar
[
James, C. K. NG. and Keith, L. P. (2004). Transmission of plant viruse by aphid vector. Molecular Plant Pathology, 5(5), 505 ‒ 511. DOI: 10.1111/j.1364-3703.2004.00240.x.20565624
]Apri DOISearch in Google Scholar
[
Ji, X., Wang, D. and Gao, C. (2019). CRISPR editing-mediated antiviral immunity: a versatile source of resistance to combat plant virus infections. Science China Life Sciences, 62 (9), 1246 – 1249. DOI: 10.1007/s11427-019-9722-2.31418136
]Apri DOISearch in Google Scholar
[
Jones, R. A. C. (2016). Future scenarios for plant virus pathogens as climate change progresses. Advances in Virus Research, 95, 87 – 147. DOI: 10.1016/bs.aivir.2016.02.004.27112281
]Apri DOISearch in Google Scholar
[
Jones, R. A. C. (2018). Chapter Six ‒ Plant and insect viruses in managed and natural environments: Novel and neglected transmission pathways. Advances in Virus Research, 101, 149 – 187. DOI: 10.1016/bs.aivir.2018.02.006.29908589
]Apri DOISearch in Google Scholar
[
Jones, R. A. C. (2020). Disease pandemics and major epidemics arising from new encounters between indigenous viruses and introduced crops. Viruses, 12(12), 1388. DOI:10.3390/v12121388.776196933291635
]Apri DOISearch in Google Scholar
[
Khan, A. A., Naqvi, Q. A., Khan, M. S., Singh, R., and Raj, S. K. (2005). First report of a begomovirus infecting Calendula in India. Plant Pathology, 54(4), 569 ‒ 569. DOI: 10.1111/j.1365-3059.2005.01220.x.
]Apri DOISearch in Google Scholar
[
Langner, T., Kamoun, S. and Belhaj, K. (2018). CRISPR crops: plant genome editing toward disease resistance. Annual Review of Phytopathology, 56, 479 – 512. DOI: 10.1146/annurev-phyto-080417-050158.29975607
]Apri DOISearch in Google Scholar
[
Li, F., Liu, W. and Zhou, X. (2019). Pivoting plant immunity from theory to the field. Science China Life Sciences, 62 (11), 1539 – 1542. DOI: 10.1007/s11427-019-1565-1.31686321
]Apri DOISearch in Google Scholar
[
Loureiro, A., Azoia, N. G., Gomes, A. C., and Cavaco-Paulo, A. (2016). Albumin-based nanodevices as drug carriers. Current Pharmaceutical Design, 22(10), 1371 – 1390. doi :10.2174/1381612822666160125114900.26806342
]Apri DOISearch in Google Scholar
[
Ma, X., Zhu, Q., Chen, Y., and Liu, Y. (2016). CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Molecular Plant, 9(7), 961 – 974. DOI: 10.1016/j.molp.2016.04.009.27108381
]Apri DOISearch in Google Scholar
[
Mahas, A. and Mahfouz, M. (2018). Engineering virus resistance via CRISPR-Cas systems. Current Opinion in Virology, 32, 1 – 8. DOI: 10.1016/j.coviro.2018.06.002.30005359
]Apri DOISearch in Google Scholar
[
Makarova, K., Wolf, Y., Alkhnbashi, O., Costa, F., Shah, S., Saunders, S., et al. (2015). An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology, 13, 722 – 736. DOI: 10.1038/nrmicro3569.542611826411297
]Apri DOISearch in Google Scholar
[
Makarova, K. S., Zhang, F. and Koonin, E. V. (2017a). Snap- Shot: class 1 CRISPR-Cas systems. Cell, 168(5), 946 ‒ 946. DOI: 10.1016/j.cell.2017.02.018.28235204
]Apri DOISearch in Google Scholar
[
Makarova, K. S., Zhang, F. and Koonin, E. V. (2017b). Snap- Shot: class 2 CRISPR-Cas systems. Cell, 168, 328. DOI: 10.1016/j.cell.2016.12.038.28086097
]Apri DOISearch in Google Scholar
[
Montes, N. and Pagán, I. (2019). Light intensity modulates the efficiency of virus seed transmission through modifications of plant tolerance. Plan Theory, 8(9), 304. DOI: 10.3390/plants8090304.678393831461899
]Apri DOISearch in Google Scholar
[
Nikalje, A. P. (2015). Nanotechnology and its applications in medicine. Medicinal Chemistry, 5(2), 1 – 9. DOI: 10.4172/2161-0444.1000247.
]Apri DOISearch in Google Scholar
[
Ning, F., Shao, M., Xu, S., Fu, Y., Zhang, R., Wei, M., and Duan, X. (2016). TiO 2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy & Environmental Science, 9(8), 2633 ‒ 2643.10.1039/C6EE01092J
]Search in Google Scholar
[
Pradhanang, P. M. (2009). Tomato mosaic virus: Does it transmit through tomato seeds? Acta Horticulturae, 808, 87 ‒ 94.10.17660/ActaHortic.2009.808.11
]Search in Google Scholar
[
Ripp, S. and Henry, T. B. (2012). Biotechnology and Nanotechnology Risk Assessment: Minding and Managing the Potential Treats around US. ACS symposium series, 1079. Publisher: American Chemical Society.
]Search in Google Scholar
[
Sevík, M. A. and Tohumcu, E. K. (2011). The ELISA analysis results in tomato (Lycopersicon esculenutm MILL.) seed health testing fot Tobacco mosaic virus. Žemdirbyste = Agriculture, 98(3), 301 ‒ 306.
]Search in Google Scholar
[
Schoelz, J. E., Harries, P. A. and Nelson, R. S. (2011). Intracellular transport of plant viruses: finding the door out of the cell. Molecular Plant, 4(5), 813 – 831. DOI: 10.1093/mp/ssr070.318339821896501
]Apri DOISearch in Google Scholar
[
Singh, S., Awasthi, L. P. and Jangre, A. (2020). Transmission of plant viruses in fields through various vectors. Applied Plant Virology, 313 – 334. DOI: 10.1016/b978-0-12-818654-1.00024-4.
]Apri DOISearch in Google Scholar
[
Shmakov, S., Smargon, A., Scott, D., Cox, D., Pyzocha, N., Yan, W., et al. (2017). Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews Microbiology, 15, 169 – 182. DOI: 10.1038/nrmicro.2016.184.585189928111461
]Apri DOISearch in Google Scholar
[
Seo, JK. and Kim, KH. (2016). Long-distance movement of viruses in plants. In Wang, A. and Zhou, X. (Eds.) Current Research Topics in Plant Virology. Springer, Cham. pp. 153 ‒ 172. DOI:10.1007/978-3-319-32919-2_6.
]Apri DOISearch in Google Scholar
[
Srivastava, A. and Singh, R. (2021). Nanoparticles for sustainable agriculture and their effect on plants. Current Nanoscience, 17(1), 58 ‒ 69.10.2174/1573413716999200403152439
]Search in Google Scholar
[
Trebicki, P. (2020). Climate change and plant virus epidemiology. Virus Research, 286, 198059. DOI: 10.1016/j.virusres.2020.198059.32561376
]Apri DOISearch in Google Scholar
[
Wang, Y., Sun, C., Xu, C., Wang, Z., Zhao, M., Wang, C., Liu, L., and Chen, F. (2016). Preliminary experiments on nano-silver against tobacco mosaic virus and its mechanism. Tobacco Science and Technology, 49, 22 ‒ 30. DOI: 10.16135/j.issn1002-0861.20160104.
]Apri DOISearch in Google Scholar
[
Zhang, Y., Malzahn, A., Sretenovic, S., and Qi, Y. (2019b). The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants, 5, 778 – 794. DOI: 10.1038/s41477-019-0461-5.31308503
]Apri DOISearch in Google Scholar
[
Zhuang, J. and Gentry, R. W. (2011). Environmental application and risks of nanotechnology: a balanced view. In Ripp, S. and Henry, T.B. (Eds.) Biotechnology and Nanotechnology Risk Assessment: Minding and Managing the Potential Threats Around Us. ACS Symposium Series, 1079. American Chemical Society, pp. 41 ‒ 67.
]Search in Google Scholar