1. bookVolume 68 (2022): Edizione 3 (October 2022)
Dettagli della rivista
Prima pubblicazione
06 Jun 2011
Frequenza di pubblicazione
4 volte all'anno
Accesso libero

Arbuscular mycorrhizal fungi induced different proline accumulations in two sorghum accessions in a response to drought stress

Pubblicato online: 18 Feb 2023
Volume & Edizione: Volume 68 (2022) - Edizione 3 (October 2022)
Pagine: 127 - 142
Ricevuto: 26 Sep 2022
Accettato: 21 Dec 2022
Dettagli della rivista
Prima pubblicazione
06 Jun 2011
Frequenza di pubblicazione
4 volte all'anno

Alotaibi, M. O., Saleh, A. M., Sobrinho, R. L., Sheteiwy, M. S., El-Sawah, A. M., Mohammed, A. E., and Elgawad, H. A. (2021). Arbuscular mycorrhizae mitigate aluminum toxicity and regulate proline metabolism in plants grown in acidic soil. Journal of Fungi, 7(7), 531. DOI: 10.3390/jof7070531.830490234209315 Apri DOISearch in Google Scholar

Bahadur, A., Batool, A., Nasir, F., Jiang, S., Mingsen, Q., Zhang, Q., Pan, J., Liu, Y., and Feng, H. (2019). Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. International Journal of Molecular Sciences, 20(17), 4199. DOI: 10.3390/ijms20174199.674727731461957 Apri DOISearch in Google Scholar

Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., and Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Sciences, 10, 1068. DOI: 10.3389/fpls.2019.01068.676148231608075 Apri DOISearch in Google Scholar

Bhale, U. N. (2018). Arbuscular mycorrhizal fungi (AMF) status and diversity of weedy plants in degraded land. International Journal of Plant Pathology, 9, 1 ‒ 8. DOI: 10.3923/ijpp.2018.1.8. Apri DOISearch in Google Scholar

Birhane, E., Aregawi, K. and Giday, K. (2017). Changes in arbuscular mycorrhiza fungi spore density and root colonization of woody plants in response to exclosure age and slope position in the highlands of Tigray, Northern Ethiopia. Journal of Arid Environments, 142, 1 ‒ 10. DOI: 10.1016/j.jaridenv.2017.03.002. Apri DOISearch in Google Scholar

Boutasknit, A., Baslam, M., Ait-El-Mokhtar, M., Anli, M., Ben- Laouane, R., Douira, A., El Modafar, C., Mitsui, T., Wahbi, S., and Meddich, A. (2020). Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting carob (Ceratonia siliqua l.) ecotypes by regulating stomatal, water relations, and (in) organic adjustments. Plants (Basel), 9(1), 80. DOI: 10.3390/plants9010080.702044031936327 Apri DOISearch in Google Scholar

Bray, E. A. (1997). Plant responses to water deficit. Trends Plant Sciences, 2, 48 – 54. DOI: 10.1016/S1360-1385(97)82562-9. Apri DOISearch in Google Scholar

Buchanan, C. D., Lim, S., Salzman, R. A., Kagiampakis, I., Morishige, D. T., Weers, B. D., Klein, R. R., Pratt, L. H., Cordonnier- Pratt, M-M., Klein, P. E., and Mullet, J. E. (2005). Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Molecular Biology, 58, 699 – 720. DOI: 10.1007/s11103-005-7876-2.16158244 Apri DOISearch in Google Scholar

Cakmak, I. and Horst, J. H. (1991). Effects of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine Max). Physiologia Plantarum, 83, 463 ‒ 468. DOI: 10.1111/j.1399-3054.1991.tb00121.x. Apri DOISearch in Google Scholar

Campos, C., Carvalho, M., Brígido, C., Goss, M. J., Nobre, T. (2018). Symbiosis specificity of the preceding host plant can dominate but not obliterate the association between wheat and its arbuscular mycorrhizal fungal partners. Frontiers in Microbiology, 27(9), 2920. DOI: 10.3389/fmicb.2018.02920.627776930542338 Apri DOISearch in Google Scholar

Cerovic, Z. G., Masdoumier, G., Ghozlen, N. B., and Latouche, G. (2012). A new optical leaf-clip meter for simutaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiologia Plantarum, 146, 251 ‒ 260. DOI: 10.1111/j.1399-3054.2012.01639.x.366608922568678 Apri DOISearch in Google Scholar

Chagnon, P. L., Bradley, R. L., Maherali, H., and Klironomos, J. N. (2013). A trait-based framework to understand life history of mycorrhizal fungi. Trends in Plant Science, 18, 484 ‒ 491. DOI: 10.1016/j.tplants.2013.05.001.23756036 Apri DOISearch in Google Scholar

Chen, W., Meng, P., Feng, H., and Wang, C. (2020). Effects of arbuscular mycorrhizal fungi on growth and physiological performance of Catalpa bungei C.A.Mey. under drought stress. Forests, 11(10), 1117. DOI: 10.3390/f11101117. Apri DOISearch in Google Scholar

Chiang, F., Mazdiyasni, O. and AghaKouchak, A. (2021). Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nature Communication, 12, 2754. DOI: 10.1038/s41467-021-22314-w.811522533980822 Apri DOISearch in Google Scholar

Chun, S. C., Paramasivan, M. and Chandrasekaran, M. (2018). Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Frontiers in Microbiology, 9, 2525. DOI: 10.3389/fmicb.2018.02525.623287330459731 Apri DOISearch in Google Scholar

Dai, A. (2011). Drought under global warming: a review. Wiley Interdisciplinary Review: Climate Change, 2, 45 – 65. DOI: 10.1002/wcc.81. Apri DOISearch in Google Scholar

De Souza, A. A., Carvalho, A. J, Bastos, E. A., Portugal, A. F., Torres, L. G., Batista, P. S. C., Julio, M. P. M., Julio, B. H. M., and de Menezes, C.B. (2020). Grain sorghum grown under drought stress at pre- and post-flowering in semiarid environment. Journal of Agricultural Science, 12(4), 97 – 105. DOI: 10.5539/jas.v12n4p97. Apri DOISearch in Google Scholar

Devnarain, N., Crampton, B. G., Chikwamba, R., Becker, J. V. W., and O’Kennedy, M. M. (2016). Physiological responses of selected African sorghum landraces to progressive water stress and re-watering. South African Journal of Botany, 103, 61 ‒ 69. DOI: 10.1016/j.sajb.2015.09.008. Apri DOISearch in Google Scholar

Diannastiti, F. A., Utami, S. N. H. and Widada, J. (2022). The role of indigenous mycorrhizae of corn plants in various soil types in Gunung Kidul, Indonesia. Planta Tropika: Jurnal Agrosains (Journal of Agro Science), 10(1), 69 ‒ 83. DOI: 10.18196/pt.v10i1.11428. Apri DOISearch in Google Scholar

Dzionek, A., Dzik, J., Wojcieszyńska, D., and Guzik, U. (2018). Fluorescein diacetate hydrolysis using the whole biofilm as a sensitive tool to evaluate the physiological state of immobilized bacterial cells. Catalysts, 8, 434. DOI: 10.3390/catal8100434. Apri DOISearch in Google Scholar

Fan, Q. J. and Liu, J. H. (2011). Colonization with arbuscular mycorrhizal fungus affects growth, drought tolerance and expression of stress-responsive genes in Poncirus trifoliata. Acta Physiologiae Plantarum, 33, 1533 – 1542. DOI: 10.1007/s11738-011-0789-6. Apri DOISearch in Google Scholar

FAO (Food and Agriculture Organization) of the United Nations. (2020). FAOSTAT: food and agriculture online data database. http://faostat.fao.org [accessed on November 28, 2022]. Search in Google Scholar

Gano, B., Dembele, J. S. B., Tovignan, T. K., Sine, B., Vadez, V., Diouf, D., and Audebert, A. (2021). Adaptation responses to early drought stress of West Africa sorghum varieties. Agronomy, 11, 443. DOI: 10.3390/agronomy11030443. Apri DOISearch in Google Scholar

García de León, D., Vahter, T., Zobel, M., Koppel, M., Edesi, L., Davison, J., Al-Quraishy, S., Hozzein, W. N., Moora, M., Oja, J., Vasar, M., and Öpik, M. (2020) Different wheat cultivars exhibit variable responses to inoculation with arbuscular mycorrhizal fungi from organic and conventional farms. PLoS ONE, 5(5), e0233878. DOI: 10.1371/journal.pone.0233878.725964232470094 Apri DOISearch in Google Scholar

Goche, T., Shargie, N. G., Cummins, I., Brown, A. P., Chivasa, S., and Ngara R. (2020) Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation. Scientific Reports, 10, 11835. DOI: 10.1038/s41598-020-68735-3.736671032678202 Apri DOISearch in Google Scholar

Green, V. S. S., Stott, D. E. E. and Diack, M. (2006). Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biology and Biochemistry, 38, 693 ‒ 701. DOI: 10.1016/j.soilbio.2005.06.020. Apri DOISearch in Google Scholar

Guo, X., Wang, Z., Zhang, J., Wang, P., Li, Y., and Ji, B. (2021). Host-specific effects of arbuscular mycorrhizal fungi on two caragana species in desert grassland. Journal of Fungi, 7, 1077. DOI: 10.3390/jof7121077.870832734947059 Apri DOISearch in Google Scholar

Haney, R. L. and Haney, E. B. (2010). Simple and rapid laboratory method for rewetting dry soil for incubations. Communications in Soil Science and Plant Analysis, 41(12), 1493 ‒ 1501. DOI: 10.1080/00103624.2010.482171. Apri DOISearch in Google Scholar

Havrlentová, M., Kraic, J., Gregusová, V., and Kovácsová, B. (2021). Drought stress in cereals – A review. Agriculture (Poľnohospodárstvo), 67(2), 47 – 60. DOI: 10.2478/agri-2021-0005. Apri DOISearch in Google Scholar

Hazzoumi, Z., Moustakime, Y., El Hassan, E., and Joutei, K. A. (2015). Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L). Chemical and Biological Technologies in Agriculture, 2, 10. DOI: 10.1186/s40538-015-0035-3. Apri DOISearch in Google Scholar

Hestrin, R., Kan, M., Lafler, M., Wollard, J., Kimbrel, J. A., Ray, P., Blazewicz, S., Stuart, R., Craven, K., Firestone, M., Nuccio, E., and Pett-Ridge, J. (2022). Plant-associated fungi support bacterial resilience following water limitation. ISME J, 16, 2752 – 2762. DOI: 10.1038/s41396-022-01308-6.966650336085516 Apri DOISearch in Google Scholar

Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., and Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition ‒ current knowledge and future directions. Frontiers in Plant Science, 8, 1617. DOI: 10.3389/fpls.2017.01617.561068228974956 Apri DOISearch in Google Scholar

Kanti, A., Ilyas, M. and Sudiana, I. M. (2018). Increase of citric acid production by Aspergillus niger Inacc F539 in sorghum’s juice medium amended with methanol. Jurnal Biologi Indonesia, 14(2), 155 ‒ 164. DOI: 10.14203/jbi.v14i2.3733. Apri DOISearch in Google Scholar

Khaleghi, A., Naderi, R., Brunetti, C., Maserti, B. E., Salami, S. A., and Babalar, M. (2019) Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Scientific Reports, 9, 19250. DOI: 10.1038/s41598-019-55889-y.691771531848429 Apri DOISearch in Google Scholar

Li, J., Meng, B., Chai, H., Yang, X., Song, W., Li, S., Lu, A., Zhang, T., and Sun, W. (2019). Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Frontiers in Plant Science, 10, 499. DOI: 10.3389/fpls.2019.00499.650382031114594 Apri DOISearch in Google Scholar

Li, Y. P., Ye, W., Wang, M., and Yan, X. (2009). Climate change and drought: a risk assessment of crop-yield impacts. Climate Research, 39, 31 – 46. DOI: 10.3354/cr00797. Apri DOISearch in Google Scholar

Li, Z., Wu, N., Meng, S., Wu, F., and Liu., T. (2020). Arbuscular mycorrhizal fungi (AMF) enhance the tolerance of Euonymus maackii Rupr. at a moderate level of salinity. PLoS One, 15(4), e0231497. DOI: 10.1371/journal.pone.0231497.715607432287291 Apri DOISearch in Google Scholar

Liang, Y., Pan, F., Jiang, Z., Qiang, L., Pu, J., and Liu, K. (2022). Accumulation in nutrient acquisition strategies of arbuscular mycorrhizal fungi and plant roots in poor and heterogeneous soils of karst shrub ecosystems. BMC Plant Biology, 22, 188. DOI: 10.1186/s12870-022-03514-y.899666235410135 Apri DOISearch in Google Scholar

Liu, H., Khan, M. Y., Carvalhais, L. C., Delgado-Baquerizo, M., Yan, L., Crawford, M., Dennis, P. G., Singh, B., and Schenk, P. M. (2019). Soil amendments with ethylene precursor alleviate negative impacts of salinity on soil microbial properties and productivity. Scientific Reports, 9(1), 1 – 13. DOI: 10.1038/s41598-019-43305-4.649980131053834 Apri DOISearch in Google Scholar

Martignago, D., Rico-Medina, A., Blasco-Escámez, D., Fontanet- Manzaneque, J. B., and Caño-Delgado, A. I. (2020). Drought resistance by engineering plant tissue-specific responses. Frontiers in Plant Sciences, 10, 1676. DOI: 10.3389/fpls.2019.01676.698772632038670 Apri DOISearch in Google Scholar

Millar, N. S. and Bennett, A. E. (2016). Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia, 182, 625 – 641. DOI: 10.1007/s00442-016-3673-7.504300027350364 Apri DOISearch in Google Scholar

Muneer, M. A., Tarin, M. W. K., Chen, X., Afridi, M. S., Iqbal, A., Munir, M. Z., Zheng, C., Zhang, J., and Ji, B. (2022). Differential response of mycorrhizal fungi linked with two dominant plant species of temperate grassland under varying levels of N-addition. Applied Soil Ecology, 170, 104272. DOI: 10.1016/j.apsoil.2021.104272. Apri DOISearch in Google Scholar

Rahimi, A. and Madah Hosseini, S. (2010). Variation of leaf water potential, relative water content and SPAD under gradual drought stress and stress recovery in two medicinal species of Plantago ovata and P. psyllium. Plant Ecophysiology, 2(2010), 53 ‒ 60. Search in Google Scholar

Ratnavathi, C. V. and Patil, J. V. (2013) Sorghum utilization as food. Journal of Nutrition and Food Sciences, 4, 247. DOI: 10.4172/2155-9600.1000247. Apri DOISearch in Google Scholar

Ray, R. C., Uppuluri, K. B., Trilokesh, C., Lareo, C. (2019). Sweet sorghum for bioethanol production: scope, technology, and economics. Chapter 5. Bioethanol Production from Food Crops, 81 ‒ 100. Cambridge: Academic Press. DOI: 10.1016/B978-0-12-813766-6.00005-9. Apri DOISearch in Google Scholar

Santoso, S. B., Pabbage, M. and Pabendon, M. B. (2013). Plasma nutfah sorgum [sorghum germplasms] In Damardjati Sumarno, Syam D.S., Hermanto M (Eds.), Sorgum: Inovasi Teknologi Dan Pengembangan [Sorghum: Technology Innovation and Development], Bogor: IAARD Press, pp. 69 ‒ 93. Search in Google Scholar

Symanczik, S., Lehmann, M. F., Wiemken, A. Boller, T., and Courty, P-E. (2018). Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Mycorrhiza, 28, 779 – 785. DOI: 10.1007/s00572-018-0853-9.30006910 Apri DOISearch in Google Scholar

Selle, P. H., Moss, A. F., Truong, H. H., Khoddami, A., Cadogan, D. J., Godwin, I. D., and Liu, S. Y. (2018). Outlook: Sorghum as a feed grain for Australian chicken-meat production. Animal Nutrition, 4(1), 17 – 30. DOI: 10.1016/j.aninu.2017.08.007.611236730167480 Apri DOISearch in Google Scholar

Sukri, M. Z., Firgiyanto, R., Sari, V. K., and Basuki. (2019). Kombinasi pupuk kandang sapi, asam humat dan mikoriza terhadap infeksi akar bermikoriza tanaman cabai dan ketersediaan unsur hara tanah udipsamments. Journal Penelitian Pertanian Terapan, 19(2), 141 ‒ 145. DOI: 10.25181/jppt.v19i2.1450. Apri DOISearch in Google Scholar

Sun, X., Shi, J. and Ding, G. (2017). Combine effect of arbuscular mycorrhiza and drought stress on plant growth and mortality of forage sorghum. Applied Soil Ecology, 119, 384 ‒ 391. DOI: 10.1016/j.apsoil.2017.07.030. Apri DOISearch in Google Scholar

Tabatabai. M. A. (1994). Soil Enzymes, Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties, 775 ‒ 833. Madison: Soil Science Society of America. DOI: 10.2136/sssabookser5.2.c37. Apri DOISearch in Google Scholar

Tang, H., Hassan, M. U., Feng, L., Nawaz, M., Shah, A. N., Qari, S. H., Liu, Y., and Miao, J. (2022). The critical role of arbuscular mycorrhizal fungi to improve drought tolerance and nitrogen use efficiency in crops. Frontiers in Plant Sciences, 13, 919166. DOI: 10.3389/fpls.2022.919166.929855335873982 Apri DOISearch in Google Scholar

Tari, I., Laskay, G., Takács, Z., and Poor, P. (2013). Response of sorghum to abiotic stresses: A review. Journal of Agronomy and Crops Sciences, 199(4), 264 – 274. DOI: 10.1111/jac.12017. Apri DOISearch in Google Scholar

Trenberth, K., Dai, A., van der Schrier, G., Jones P. D., Barichivich, J., Briffa, K. R., and Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4, 17 – 22. DOI: 10.1038/nclimate2067. Apri DOISearch in Google Scholar

Torrecillas, E., Alguacil, M. M. and Roldán, A. (2012). Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies. Applied and Environmental Microbiology, 78(17), 6180 ‒ 6186. DOI: 10.1128/AEM.01287-12.341661022752164 Apri DOISearch in Google Scholar

Wahyuni, Y., Miyamoto, T., Hartati, H., Widjayantie, D., Windiastri, V. E., Sulistyowati, Y., Rachmat, A., Hartati, N. S., Ragamustari, S. K., Tobimatsu, Y., Nugroho, S., and Umezawa, T. (2019). Variation in lignocellulose characteristics of 30 Indonesian sorghum (Sorghum bicolor) accessions. Industrial Crops and Products, 142, 111840. DOI: 10.1016/j.indcrop.2019.111840. Apri DOISearch in Google Scholar

Wang, X., Feng, H., Wang, Y., Wang, M., Xie, X., Chang, H., Wang, L., Qu, J., Sun, K., He, W., Wang, C., Dai, C., Chu, Z., Tian, C., Yu, N., Zhang, X., Liu, H., and Wang, E. (2021). Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia-legume symbiosis. Molecular Plant, 14(3), 503 ‒ 516. DOI: 10.1016/j.molp.2020.12.002.33309942 Apri DOISearch in Google Scholar

Wang, Y., Lin, J., Yang, F., Tao, S., Yan, X., Zhou, Z., and Zhang, Y. (2022). Arbuscular mycorrhizal fungi improve the growth and performance in the seedlings of Leymus chinensis under alkali and drought stresses. PeerJ, 10, e12890. DOI: 10.7717/peerj.12890.881826835186481 Apri DOISearch in Google Scholar

Werner, G. D. A. and Kiers, E. T. (2015). Partner selection in the mycorrhizal mutualism. New Phytologist, 205, 1437 ‒ 1442. DOI: 10.1111/nph.13113.25421912 Apri DOISearch in Google Scholar

Wiloso, E. I, Setiawan, A. A. R., Prasetia, H., Muryanto, M., Wiloso, A. R., Subiyakto, S., Sudiana, I. M, Lestari, R., Nugroho, S., Hermawan, D., Fang, K., and Heijungs, R. (2020). Production of sorghum pellets for electricity generation in Indonesia: A life cycle assessment. Biofuel Research Journal, 7(3), 1178 ‒ 1194. DOI: 10.18331/BRJ2020.7.3.2. Apri DOISearch in Google Scholar

Wu, S., Shi, Z., Chen, X., Gao, J., and Wang, X. (2022). Arbuscular mycorrhizal fungi increase crop yields by improving biomass under rainfed condition: a meta-analysis. PeerJ, 10, e12861. DOI: 10.7717/peerj.12861.881536435178300 Apri DOISearch in Google Scholar

Xiong, Y., Zhang, P., Warner, R. D., and Fang, Z. (2019). Sorghum grain: From genotype, nutrition, and phenolic profile to its health benefits and food applications. Comprehensive Reviews in Food Science and Food Safety, 18(6), 2025 – 2046. DOI: 10.1111/1541-4337.12506.33336966 Apri DOISearch in Google Scholar

Yang, J., Zhang, N., Ma, C., Qu, Y., Si, H., and Wang, D. (2013). Prediction and verification of microRNAs related to proline accumulation under drought stress in potato. Computational Biology and Chemistry, 46, 48 – 54. DOI: 10.1016/j.compbiolchem.2013.04.006.23764530 Apri DOISearch in Google Scholar

Yao, Q., Zhu, H. H., Hu, Y. L., and Li, L. Q. (2008). Differential influence of native and introduced arbuscular mycorrhizal fungi on growth of dominan and subordinate plants. Plant Ecol, 196, 261 ‒ 268. DOI: 10.1007/s11258-007-9350-5. Apri DOISearch in Google Scholar

Yooyongwech, S., Phaukinsang, N., Cha-um, S., and Supaibulwatana K. (2013). Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regulation, 69, 285 – 293. DOI: 10.1007/s10725-012-9771-6. Apri DOISearch in Google Scholar

Yulianto, Putri, D. N., Perdani, M. S., Arbiantia, R., Suryanegara, L., and Hermansyah, H. (2020). Effect of cellulose fiber from sorghum bagasse on the mechanical properties and biodegradability of polylactic acid. Energy Reports, 6(1), 221 – 226. DOI: 10.1016/j.egyr.2019.08.048. Apri DOISearch in Google Scholar

Zhang, Y., Luan, Q., Jiang, J., and Li, Y. (2021) Prediction and utilization of malondialdehyde in exotic pine under drought stress using near-infrared spectroscopy. Frontiers in Plant Science, 12, 735275. DOI: 10.3389/fpls.2021.735275.855820734733301 Apri DOISearch in Google Scholar

Zhang, H., Zhao, Y., Zhu, J. K. (2020). Thriving under stress: how plants balance growth and the stress respon. Developmental Cell, 55, 529 ‒ 543. DOI:10.1016/j.devcel.2020.10.012.33290694 Apri DOISearch in Google Scholar

Articoli consigliati da Trend MD