[
Alotaibi, M. O., Saleh, A. M., Sobrinho, R. L., Sheteiwy, M. S., El-Sawah, A. M., Mohammed, A. E., and Elgawad, H. A. (2021). Arbuscular mycorrhizae mitigate aluminum toxicity and regulate proline metabolism in plants grown in acidic soil. Journal of Fungi, 7(7), 531. DOI: 10.3390/jof7070531.830490234209315
]Apri DOISearch in Google Scholar
[
Bahadur, A., Batool, A., Nasir, F., Jiang, S., Mingsen, Q., Zhang, Q., Pan, J., Liu, Y., and Feng, H. (2019). Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. International Journal of Molecular Sciences, 20(17), 4199. DOI: 10.3390/ijms20174199.674727731461957
]Apri DOISearch in Google Scholar
[
Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., and Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Sciences, 10, 1068. DOI: 10.3389/fpls.2019.01068.676148231608075
]Apri DOISearch in Google Scholar
[
Bhale, U. N. (2018). Arbuscular mycorrhizal fungi (AMF) status and diversity of weedy plants in degraded land. International Journal of Plant Pathology, 9, 1 ‒ 8. DOI: 10.3923/ijpp.2018.1.8.
]Apri DOISearch in Google Scholar
[
Birhane, E., Aregawi, K. and Giday, K. (2017). Changes in arbuscular mycorrhiza fungi spore density and root colonization of woody plants in response to exclosure age and slope position in the highlands of Tigray, Northern Ethiopia. Journal of Arid Environments, 142, 1 ‒ 10. DOI: 10.1016/j.jaridenv.2017.03.002.
]Apri DOISearch in Google Scholar
[
Boutasknit, A., Baslam, M., Ait-El-Mokhtar, M., Anli, M., Ben- Laouane, R., Douira, A., El Modafar, C., Mitsui, T., Wahbi, S., and Meddich, A. (2020). Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting carob (Ceratonia siliqua l.) ecotypes by regulating stomatal, water relations, and (in) organic adjustments. Plants (Basel), 9(1), 80. DOI: 10.3390/plants9010080.702044031936327
]Apri DOISearch in Google Scholar
[
Bray, E. A. (1997). Plant responses to water deficit. Trends Plant Sciences, 2, 48 – 54. DOI: 10.1016/S1360-1385(97)82562-9.
]Apri DOISearch in Google Scholar
[
Buchanan, C. D., Lim, S., Salzman, R. A., Kagiampakis, I., Morishige, D. T., Weers, B. D., Klein, R. R., Pratt, L. H., Cordonnier- Pratt, M-M., Klein, P. E., and Mullet, J. E. (2005). Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Molecular Biology, 58, 699 – 720. DOI: 10.1007/s11103-005-7876-2.16158244
]Apri DOISearch in Google Scholar
[
Cakmak, I. and Horst, J. H. (1991). Effects of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine Max). Physiologia Plantarum, 83, 463 ‒ 468. DOI: 10.1111/j.1399-3054.1991.tb00121.x.
]Apri DOISearch in Google Scholar
[
Campos, C., Carvalho, M., Brígido, C., Goss, M. J., Nobre, T. (2018). Symbiosis specificity of the preceding host plant can dominate but not obliterate the association between wheat and its arbuscular mycorrhizal fungal partners. Frontiers in Microbiology, 27(9), 2920. DOI: 10.3389/fmicb.2018.02920.627776930542338
]Apri DOISearch in Google Scholar
[
Cerovic, Z. G., Masdoumier, G., Ghozlen, N. B., and Latouche, G. (2012). A new optical leaf-clip meter for simutaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiologia Plantarum, 146, 251 ‒ 260. DOI: 10.1111/j.1399-3054.2012.01639.x.366608922568678
]Apri DOISearch in Google Scholar
[
Chagnon, P. L., Bradley, R. L., Maherali, H., and Klironomos, J. N. (2013). A trait-based framework to understand life history of mycorrhizal fungi. Trends in Plant Science, 18, 484 ‒ 491. DOI: 10.1016/j.tplants.2013.05.001.23756036
]Apri DOISearch in Google Scholar
[
Chen, W., Meng, P., Feng, H., and Wang, C. (2020). Effects of arbuscular mycorrhizal fungi on growth and physiological performance of Catalpa bungei C.A.Mey. under drought stress. Forests, 11(10), 1117. DOI: 10.3390/f11101117.
]Apri DOISearch in Google Scholar
[
Chiang, F., Mazdiyasni, O. and AghaKouchak, A. (2021). Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nature Communication, 12, 2754. DOI: 10.1038/s41467-021-22314-w.811522533980822
]Apri DOISearch in Google Scholar
[
Chun, S. C., Paramasivan, M. and Chandrasekaran, M. (2018). Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Frontiers in Microbiology, 9, 2525. DOI: 10.3389/fmicb.2018.02525.623287330459731
]Apri DOISearch in Google Scholar
[
Dai, A. (2011). Drought under global warming: a review. Wiley Interdisciplinary Review: Climate Change, 2, 45 – 65. DOI: 10.1002/wcc.81.
]Apri DOISearch in Google Scholar
[
De Souza, A. A., Carvalho, A. J, Bastos, E. A., Portugal, A. F., Torres, L. G., Batista, P. S. C., Julio, M. P. M., Julio, B. H. M., and de Menezes, C.B. (2020). Grain sorghum grown under drought stress at pre- and post-flowering in semiarid environment. Journal of Agricultural Science, 12(4), 97 – 105. DOI: 10.5539/jas.v12n4p97.
]Apri DOISearch in Google Scholar
[
Devnarain, N., Crampton, B. G., Chikwamba, R., Becker, J. V. W., and O’Kennedy, M. M. (2016). Physiological responses of selected African sorghum landraces to progressive water stress and re-watering. South African Journal of Botany, 103, 61 ‒ 69. DOI: 10.1016/j.sajb.2015.09.008.
]Apri DOISearch in Google Scholar
[
Diannastiti, F. A., Utami, S. N. H. and Widada, J. (2022). The role of indigenous mycorrhizae of corn plants in various soil types in Gunung Kidul, Indonesia. Planta Tropika: Jurnal Agrosains (Journal of Agro Science), 10(1), 69 ‒ 83. DOI: 10.18196/pt.v10i1.11428.
]Apri DOISearch in Google Scholar
[
Dzionek, A., Dzik, J., Wojcieszyńska, D., and Guzik, U. (2018). Fluorescein diacetate hydrolysis using the whole biofilm as a sensitive tool to evaluate the physiological state of immobilized bacterial cells. Catalysts, 8, 434. DOI: 10.3390/catal8100434.
]Apri DOISearch in Google Scholar
[
Fan, Q. J. and Liu, J. H. (2011). Colonization with arbuscular mycorrhizal fungus affects growth, drought tolerance and expression of stress-responsive genes in Poncirus trifoliata. Acta Physiologiae Plantarum, 33, 1533 – 1542. DOI: 10.1007/s11738-011-0789-6.
]Apri DOISearch in Google Scholar
[
FAO (Food and Agriculture Organization) of the United Nations. (2020). FAOSTAT: food and agriculture online data database. http://faostat.fao.org [accessed on November 28, 2022].
]Search in Google Scholar
[
Gano, B., Dembele, J. S. B., Tovignan, T. K., Sine, B., Vadez, V., Diouf, D., and Audebert, A. (2021). Adaptation responses to early drought stress of West Africa sorghum varieties. Agronomy, 11, 443. DOI: 10.3390/agronomy11030443.
]Apri DOISearch in Google Scholar
[
García de León, D., Vahter, T., Zobel, M., Koppel, M., Edesi, L., Davison, J., Al-Quraishy, S., Hozzein, W. N., Moora, M., Oja, J., Vasar, M., and Öpik, M. (2020) Different wheat cultivars exhibit variable responses to inoculation with arbuscular mycorrhizal fungi from organic and conventional farms. PLoS ONE, 5(5), e0233878. DOI: 10.1371/journal.pone.0233878.725964232470094
]Apri DOISearch in Google Scholar
[
Goche, T., Shargie, N. G., Cummins, I., Brown, A. P., Chivasa, S., and Ngara R. (2020) Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation. Scientific Reports, 10, 11835. DOI: 10.1038/s41598-020-68735-3.736671032678202
]Apri DOISearch in Google Scholar
[
Green, V. S. S., Stott, D. E. E. and Diack, M. (2006). Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biology and Biochemistry, 38, 693 ‒ 701. DOI: 10.1016/j.soilbio.2005.06.020.
]Apri DOISearch in Google Scholar
[
Guo, X., Wang, Z., Zhang, J., Wang, P., Li, Y., and Ji, B. (2021). Host-specific effects of arbuscular mycorrhizal fungi on two caragana species in desert grassland. Journal of Fungi, 7, 1077. DOI: 10.3390/jof7121077.870832734947059
]Apri DOISearch in Google Scholar
[
Haney, R. L. and Haney, E. B. (2010). Simple and rapid laboratory method for rewetting dry soil for incubations. Communications in Soil Science and Plant Analysis, 41(12), 1493 ‒ 1501. DOI: 10.1080/00103624.2010.482171.
]Apri DOISearch in Google Scholar
[
Havrlentová, M., Kraic, J., Gregusová, V., and Kovácsová, B. (2021). Drought stress in cereals – A review. Agriculture (Poľnohospodárstvo), 67(2), 47 – 60. DOI: 10.2478/agri-2021-0005.
]Apri DOISearch in Google Scholar
[
Hazzoumi, Z., Moustakime, Y., El Hassan, E., and Joutei, K. A. (2015). Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L). Chemical and Biological Technologies in Agriculture, 2, 10. DOI: 10.1186/s40538-015-0035-3.
]Apri DOISearch in Google Scholar
[
Hestrin, R., Kan, M., Lafler, M., Wollard, J., Kimbrel, J. A., Ray, P., Blazewicz, S., Stuart, R., Craven, K., Firestone, M., Nuccio, E., and Pett-Ridge, J. (2022). Plant-associated fungi support bacterial resilience following water limitation. ISME J, 16, 2752 – 2762. DOI: 10.1038/s41396-022-01308-6.966650336085516
]Apri DOISearch in Google Scholar
[
Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., and Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition ‒ current knowledge and future directions. Frontiers in Plant Science, 8, 1617. DOI: 10.3389/fpls.2017.01617.561068228974956
]Apri DOISearch in Google Scholar
[
Kanti, A., Ilyas, M. and Sudiana, I. M. (2018). Increase of citric acid production by Aspergillus niger Inacc F539 in sorghum’s juice medium amended with methanol. Jurnal Biologi Indonesia, 14(2), 155 ‒ 164. DOI: 10.14203/jbi.v14i2.3733.
]Apri DOISearch in Google Scholar
[
Khaleghi, A., Naderi, R., Brunetti, C., Maserti, B. E., Salami, S. A., and Babalar, M. (2019) Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Scientific Reports, 9, 19250. DOI: 10.1038/s41598-019-55889-y.691771531848429
]Apri DOISearch in Google Scholar
[
Li, J., Meng, B., Chai, H., Yang, X., Song, W., Li, S., Lu, A., Zhang, T., and Sun, W. (2019). Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Frontiers in Plant Science, 10, 499. DOI: 10.3389/fpls.2019.00499.650382031114594
]Apri DOISearch in Google Scholar
[
Li, Y. P., Ye, W., Wang, M., and Yan, X. (2009). Climate change and drought: a risk assessment of crop-yield impacts. Climate Research, 39, 31 – 46. DOI: 10.3354/cr00797.
]Apri DOISearch in Google Scholar
[
Li, Z., Wu, N., Meng, S., Wu, F., and Liu., T. (2020). Arbuscular mycorrhizal fungi (AMF) enhance the tolerance of Euonymus maackii Rupr. at a moderate level of salinity. PLoS One, 15(4), e0231497. DOI: 10.1371/journal.pone.0231497.715607432287291
]Apri DOISearch in Google Scholar
[
Liang, Y., Pan, F., Jiang, Z., Qiang, L., Pu, J., and Liu, K. (2022). Accumulation in nutrient acquisition strategies of arbuscular mycorrhizal fungi and plant roots in poor and heterogeneous soils of karst shrub ecosystems. BMC Plant Biology, 22, 188. DOI: 10.1186/s12870-022-03514-y.899666235410135
]Apri DOISearch in Google Scholar
[
Liu, H., Khan, M. Y., Carvalhais, L. C., Delgado-Baquerizo, M., Yan, L., Crawford, M., Dennis, P. G., Singh, B., and Schenk, P. M. (2019). Soil amendments with ethylene precursor alleviate negative impacts of salinity on soil microbial properties and productivity. Scientific Reports, 9(1), 1 – 13. DOI: 10.1038/s41598-019-43305-4.649980131053834
]Apri DOISearch in Google Scholar
[
Martignago, D., Rico-Medina, A., Blasco-Escámez, D., Fontanet- Manzaneque, J. B., and Caño-Delgado, A. I. (2020). Drought resistance by engineering plant tissue-specific responses. Frontiers in Plant Sciences, 10, 1676. DOI: 10.3389/fpls.2019.01676.698772632038670
]Apri DOISearch in Google Scholar
[
Millar, N. S. and Bennett, A. E. (2016). Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia, 182, 625 – 641. DOI: 10.1007/s00442-016-3673-7.504300027350364
]Apri DOISearch in Google Scholar
[
Muneer, M. A., Tarin, M. W. K., Chen, X., Afridi, M. S., Iqbal, A., Munir, M. Z., Zheng, C., Zhang, J., and Ji, B. (2022). Differential response of mycorrhizal fungi linked with two dominant plant species of temperate grassland under varying levels of N-addition. Applied Soil Ecology, 170, 104272. DOI: 10.1016/j.apsoil.2021.104272.
]Apri DOISearch in Google Scholar
[
Rahimi, A. and Madah Hosseini, S. (2010). Variation of leaf water potential, relative water content and SPAD under gradual drought stress and stress recovery in two medicinal species of Plantago ovata and P. psyllium. Plant Ecophysiology, 2(2010), 53 ‒ 60.
]Search in Google Scholar
[
Ratnavathi, C. V. and Patil, J. V. (2013) Sorghum utilization as food. Journal of Nutrition and Food Sciences, 4, 247. DOI: 10.4172/2155-9600.1000247.
]Apri DOISearch in Google Scholar
[
Ray, R. C., Uppuluri, K. B., Trilokesh, C., Lareo, C. (2019). Sweet sorghum for bioethanol production: scope, technology, and economics. Chapter 5. Bioethanol Production from Food Crops, 81 ‒ 100. Cambridge: Academic Press. DOI: 10.1016/B978-0-12-813766-6.00005-9.
]Apri DOISearch in Google Scholar
[
Santoso, S. B., Pabbage, M. and Pabendon, M. B. (2013). Plasma nutfah sorgum [sorghum germplasms] In Damardjati Sumarno, Syam D.S., Hermanto M (Eds.), Sorgum: Inovasi Teknologi Dan Pengembangan [Sorghum: Technology Innovation and Development], Bogor: IAARD Press, pp. 69 ‒ 93.
]Search in Google Scholar
[
Symanczik, S., Lehmann, M. F., Wiemken, A. Boller, T., and Courty, P-E. (2018). Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Mycorrhiza, 28, 779 – 785. DOI: 10.1007/s00572-018-0853-9.30006910
]Apri DOISearch in Google Scholar
[
Selle, P. H., Moss, A. F., Truong, H. H., Khoddami, A., Cadogan, D. J., Godwin, I. D., and Liu, S. Y. (2018). Outlook: Sorghum as a feed grain for Australian chicken-meat production. Animal Nutrition, 4(1), 17 – 30. DOI: 10.1016/j.aninu.2017.08.007.611236730167480
]Apri DOISearch in Google Scholar
[
Sukri, M. Z., Firgiyanto, R., Sari, V. K., and Basuki. (2019). Kombinasi pupuk kandang sapi, asam humat dan mikoriza terhadap infeksi akar bermikoriza tanaman cabai dan ketersediaan unsur hara tanah udipsamments. Journal Penelitian Pertanian Terapan, 19(2), 141 ‒ 145. DOI: 10.25181/jppt.v19i2.1450.
]Apri DOISearch in Google Scholar
[
Sun, X., Shi, J. and Ding, G. (2017). Combine effect of arbuscular mycorrhiza and drought stress on plant growth and mortality of forage sorghum. Applied Soil Ecology, 119, 384 ‒ 391. DOI: 10.1016/j.apsoil.2017.07.030.
]Apri DOISearch in Google Scholar
[
Tabatabai. M. A. (1994). Soil Enzymes, Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties, 775 ‒ 833. Madison: Soil Science Society of America. DOI: 10.2136/sssabookser5.2.c37.
]Apri DOISearch in Google Scholar
[
Tang, H., Hassan, M. U., Feng, L., Nawaz, M., Shah, A. N., Qari, S. H., Liu, Y., and Miao, J. (2022). The critical role of arbuscular mycorrhizal fungi to improve drought tolerance and nitrogen use efficiency in crops. Frontiers in Plant Sciences, 13, 919166. DOI: 10.3389/fpls.2022.919166.929855335873982
]Apri DOISearch in Google Scholar
[
Tari, I., Laskay, G., Takács, Z., and Poor, P. (2013). Response of sorghum to abiotic stresses: A review. Journal of Agronomy and Crops Sciences, 199(4), 264 – 274. DOI: 10.1111/jac.12017.
]Apri DOISearch in Google Scholar
[
Trenberth, K., Dai, A., van der Schrier, G., Jones P. D., Barichivich, J., Briffa, K. R., and Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4, 17 – 22. DOI: 10.1038/nclimate2067.
]Apri DOISearch in Google Scholar
[
Torrecillas, E., Alguacil, M. M. and Roldán, A. (2012). Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies. Applied and Environmental Microbiology, 78(17), 6180 ‒ 6186. DOI: 10.1128/AEM.01287-12.341661022752164
]Apri DOISearch in Google Scholar
[
Wahyuni, Y., Miyamoto, T., Hartati, H., Widjayantie, D., Windiastri, V. E., Sulistyowati, Y., Rachmat, A., Hartati, N. S., Ragamustari, S. K., Tobimatsu, Y., Nugroho, S., and Umezawa, T. (2019). Variation in lignocellulose characteristics of 30 Indonesian sorghum (Sorghum bicolor) accessions. Industrial Crops and Products, 142, 111840. DOI: 10.1016/j.indcrop.2019.111840.
]Apri DOISearch in Google Scholar
[
Wang, X., Feng, H., Wang, Y., Wang, M., Xie, X., Chang, H., Wang, L., Qu, J., Sun, K., He, W., Wang, C., Dai, C., Chu, Z., Tian, C., Yu, N., Zhang, X., Liu, H., and Wang, E. (2021). Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia-legume symbiosis. Molecular Plant, 14(3), 503 ‒ 516. DOI: 10.1016/j.molp.2020.12.002.33309942
]Apri DOISearch in Google Scholar
[
Wang, Y., Lin, J., Yang, F., Tao, S., Yan, X., Zhou, Z., and Zhang, Y. (2022). Arbuscular mycorrhizal fungi improve the growth and performance in the seedlings of Leymus chinensis under alkali and drought stresses. PeerJ, 10, e12890. DOI: 10.7717/peerj.12890.881826835186481
]Apri DOISearch in Google Scholar
[
Werner, G. D. A. and Kiers, E. T. (2015). Partner selection in the mycorrhizal mutualism. New Phytologist, 205, 1437 ‒ 1442. DOI: 10.1111/nph.13113.25421912
]Apri DOISearch in Google Scholar
[
Wiloso, E. I, Setiawan, A. A. R., Prasetia, H., Muryanto, M., Wiloso, A. R., Subiyakto, S., Sudiana, I. M, Lestari, R., Nugroho, S., Hermawan, D., Fang, K., and Heijungs, R. (2020). Production of sorghum pellets for electricity generation in Indonesia: A life cycle assessment. Biofuel Research Journal, 7(3), 1178 ‒ 1194. DOI: 10.18331/BRJ2020.7.3.2.
]Apri DOISearch in Google Scholar
[
Wu, S., Shi, Z., Chen, X., Gao, J., and Wang, X. (2022). Arbuscular mycorrhizal fungi increase crop yields by improving biomass under rainfed condition: a meta-analysis. PeerJ, 10, e12861. DOI: 10.7717/peerj.12861.881536435178300
]Apri DOISearch in Google Scholar
[
Xiong, Y., Zhang, P., Warner, R. D., and Fang, Z. (2019). Sorghum grain: From genotype, nutrition, and phenolic profile to its health benefits and food applications. Comprehensive Reviews in Food Science and Food Safety, 18(6), 2025 – 2046. DOI: 10.1111/1541-4337.12506.33336966
]Apri DOISearch in Google Scholar
[
Yang, J., Zhang, N., Ma, C., Qu, Y., Si, H., and Wang, D. (2013). Prediction and verification of microRNAs related to proline accumulation under drought stress in potato. Computational Biology and Chemistry, 46, 48 – 54. DOI: 10.1016/j.compbiolchem.2013.04.006.23764530
]Apri DOISearch in Google Scholar
[
Yao, Q., Zhu, H. H., Hu, Y. L., and Li, L. Q. (2008). Differential influence of native and introduced arbuscular mycorrhizal fungi on growth of dominan and subordinate plants. Plant Ecol, 196, 261 ‒ 268. DOI: 10.1007/s11258-007-9350-5.
]Apri DOISearch in Google Scholar
[
Yooyongwech, S., Phaukinsang, N., Cha-um, S., and Supaibulwatana K. (2013). Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regulation, 69, 285 – 293. DOI: 10.1007/s10725-012-9771-6.
]Apri DOISearch in Google Scholar
[
Yulianto, Putri, D. N., Perdani, M. S., Arbiantia, R., Suryanegara, L., and Hermansyah, H. (2020). Effect of cellulose fiber from sorghum bagasse on the mechanical properties and biodegradability of polylactic acid. Energy Reports, 6(1), 221 – 226. DOI: 10.1016/j.egyr.2019.08.048.
]Apri DOISearch in Google Scholar
[
Zhang, Y., Luan, Q., Jiang, J., and Li, Y. (2021) Prediction and utilization of malondialdehyde in exotic pine under drought stress using near-infrared spectroscopy. Frontiers in Plant Science, 12, 735275. DOI: 10.3389/fpls.2021.735275.855820734733301
]Apri DOISearch in Google Scholar
[
Zhang, H., Zhao, Y., Zhu, J. K. (2020). Thriving under stress: how plants balance growth and the stress respon. Developmental Cell, 55, 529 ‒ 543. DOI:10.1016/j.devcel.2020.10.012.33290694
]Apri DOISearch in Google Scholar