This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Aldossary S. Review on pharmacology of cisplatin: clinical use, toxicity and mechanism of resistance of cisplatin. Biomed Pharmacology J. 2019;12(1):7–15. DOI:https://dx.doi.org/10.13005/bpj/1608https://bit.ly/2HXEUBGAldossarySReview on pharmacology of cisplatin: clinical use, toxicity and mechanism of resistance of cisplatinBiomed Pharmacology J2019121715DOI:https://dx.doi.org/10.13005/bpj/1608https://bit.ly/2HXEUBGSearch in Google Scholar
Cui X, Gong J, Han H, He L, Teng Y, Tetley T, Sinharay R, Chung K, Islam T, Gilliland F, Grady S, Garshick E, Li Zh, Zhang J. Relationship between free and total malondialdehyde, a well-established marker of oxidative stress, in various types of human biospecimens. Journal of Thoracic Disease. 2018;10(5):3088–3097. DOI: 10.21037/jtd.2018.05.92https://jtd.amegroups.org/article/view/21482/htmlCuiXGongJHanHHeLTengYTetleyTSinharayRChungKIslamTGillilandFGradySGarshickELiZhZhangJRelationship between free and total malondialdehyde, a well-established marker of oxidative stress, in various types of human biospecimensJournal of Thoracic Disease20181053088309710.21037/jtd.2018.05.92https://jtd.amegroups.org/article/view/21482/htmlOpen DOISearch in Google Scholar
Dasari S, Njiki S, Mbemi A, Yedjou C, Tchounwou P. Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy. Int. J. Mol. Sci. 2022;23(3),1532: 1–25. [https://doi.org/10.3390/ijms23031532https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835907/DasariSNjikiSMbemiAYedjouCTchounwouPPharmacological effects of cisplatin combination with natural products in cancer chemotherapyInt. J. Mol. Sci.20222331532:125[https://doi.org/10.3390/ijms23031532https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835907/Search in Google Scholar
Garcia J, Scherer T, Chen J, Guillory B, Nassif A, Papusha V, Smiechowska J, Asnicar M, Buettner C, Smith R. Inhibition of cisplatin-induced lipid catabolism and weight loss by ghrelin in male mice. Endocrinology. 2013;154(9):3118–3129. [DOI: 10.1210/en.2013-1179https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749475/GarciaJSchererTChenJGuilloryBNassifAPapushaVSmiechowskaJAsnicarMBuettnerCSmithRInhibition of cisplatin-induced lipid catabolism and weight loss by ghrelin in male miceEndocrinology201315493118312910.1210/en.2013-1179https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749475/Open DOISearch in Google Scholar
Gaschler M, Stockwell B. Lipid peroxidation in cell death. Biochemical and Biophysical Research Communications. 2017;482(3):419–425. doi: 10.1016/j.bbrc.2016.10.086 [https://pubmed.ncbi.nlm.nih.gov/28212725/GaschlerMStockwellBLipid peroxidation in cell deathBiochemical and Biophysical Research Communications2017482341942510.1016/j.bbrc.2016.10.086[https://pubmed.ncbi.nlm.nih.gov/28212725/Open DOISearch in Google Scholar
Gentile F, Arcaro A, Pizzimenti S, Daga M, Cetrangolo G, Dianzani C, Lepore A, Graf M, Ames P, Barrera G. DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity. AIMS Genet. 2017;4(2):103–137. doi: 10.3934/genet.2017.2.103 [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690246/GentileFArcaroAPizzimentiSDagaMCetrangoloGDianzaniCLeporeAGrafMAmesPBarreraGDNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunityAIMS Genet20174210313710.3934/genet.2017.2.103[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6690246/Open DOISearch in Google Scholar
Habtemariam S. Modulation of reactive oxygen species in health and disease. Antioxidants. 2019;8(11):513–516. doi: 10.3390/antiox8110513https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912431/HabtemariamSModulation of reactive oxygen species in health and diseaseAntioxidants201981151351610.3390/antiox8110513https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912431/Open DOISearch in Google Scholar
Hauck A, Bernlohr D. Oxidative stress and lipotoxicity. Journal of Lipid Research. 2016;57(11):1977–1986. DOI: 10.1194/jlr.R066597https://pubmed.ncbi.nlm.nih.gov/27009116/HauckABernlohrDOxidative stress and lipotoxicityJournal of Lipid Research201657111977198610.1194/jlr.R066597https://pubmed.ncbi.nlm.nih.gov/27009116/Open DOISearch in Google Scholar
Jadoon S, Malik A. A review article on the formation, mechanism and biochemistry of MDA and MDA as a biomarker of oxidative stress. Int J Adv. Res. 2017;5(12):811–818. DOI: 10.21474/IJAR01/6024 [http://dx.doi.org/10.21474/IJAR01/6024JadoonSMalikAA review article on the formation, mechanism and biochemistry of MDA and MDA as a biomarker of oxidative stressInt J Adv. Res.201751281181810.21474/IJAR01/6024[http://dx.doi.org/10.21474/IJAR01/6024Open DOISearch in Google Scholar
Jin H, Wang J, Wang Z, Xi M, Xia B, Deng K, Yang J. Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. Journal of Hematology & Oncology. 2023;16:103:1–33. [https://jhoonline.biomedcentral.com/articles/10.1186/s13045-023-01498-2JinHWangJWangZXiMXiaBDengKYangJLipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeuticsJournal of Hematology & Oncology202316103133[https://jhoonline.biomedcentral.com/articles/10.1186/s13045-023-01498-2Search in Google Scholar
Kalb V, Bernlohr R. A new spectrophotometric assay for protein in cell extracts. Anal Biochem. 1977;82(2):362–371. DOI: 10.1016/0003-2697(77)90173-7 [https://www.sciencedirect.com/science/article/abs/pii/0003269777901737KalbVBernlohrRA new spectrophotometric assay for protein in cell extractsAnal Biochem197782236237110.1016/0003-2697(77)90173-7[https://www.sciencedirect.com/science/article/abs/pii/0003269777901737Open DOISearch in Google Scholar
Koroliuk M, Ivanova L, Maĭorova I, Tokarev V. A method of determining catalase activity. Lab Delo. 1988;1:16–19. (Published in Russian). [https://pubmed.ncbi.nlm.nih.gov/2451064/KoroliukMIvanovaLMaĭorovaITokarevVA method of determining catalase activityLab Delo198811619(Published in Russian). [https://pubmed.ncbi.nlm.nih.gov/2451064/Search in Google Scholar
Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Analyt. Biochem. 1978; 86:271–278. DOI: 10.1016/0003-2697(78)90342-1 [https://www.sciencedirect.com/science/article/abs/pii/0003269778903421UchiyamaMMiharaMDetermination of malonaldehyde precursor in tissues by thiobarbituric acid testAnalyt. Biochem19788627127810.1016/0003-2697(78)90342-1[https://www.sciencedirect.com/science/article/abs/pii/0003269778903421Open DOISearch in Google Scholar
Mirzaei S, Hushmandi K, Zabolian A, Saleki H, Torabi S, Ranjbar A, SeyedSaleh S, Sharifzadeh S, Khan H, Ashrafizadeh M, et al. Elucidating role of reactive oxygen species (ROS) in cisplatin chemotherapy: a focus on molecular pathways and possible therapeutic strategies. Molecules. 2021;26:2382:1–37. DOI: 10.3390/molecules26082382 [https://pubmed.ncbi.nlm.nih.gov/33921908/MirzaeiSHushmandiKZabolianASalekiHTorabiSRanjbarASeyedSalehSSharifzadehSKhanHAshrafizadehMElucidating role of reactive oxygen species (ROS) in cisplatin chemotherapy: a focus on molecular pathways and possible therapeutic strategiesMolecules2021262382:13710.3390/molecules26082382[https://pubmed.ncbi.nlm.nih.gov/33921908/Open DOISearch in Google Scholar
Plathow C, Weber W. Tumor cell metabolism imaging. Journal of Nuclear Medicine. 2008;4(6):43S–63S. DOI: https://doi.org/10.2967/jnumed.107.045930 [https://jnm.snmjournals.org/content/49/Suppl_2/43SPlathowCWeberWTumor cell metabolism imagingJournal of Nuclear Medicine20084643S63SDOI: https://doi.org/10.2967/jnumed.107.045930 [https://jnm.snmjournals.org/content/49/Suppl_2/43SSearch in Google Scholar
Singh R, Manna P. Reactive oxygen species in cancer progression and its role in therapeutics. Explore Med. 2022;3:43–57. DOI: https://doi.org/10.37349/emed.2022.00073 [https://www.explorationpub.com/Journals/em/Article/100173SinghRMannaPReactive oxygen species in cancer progression and its role in therapeuticsExplore Med202234357DOI: https://doi.org/10.37349/emed.2022.00073 [https://www.explorationpub.com/Journals/em/Article/100173Search in Google Scholar
Tchounwou P, Dasari S, Noubissi F, Ray P, Kumar S. Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy. J. Exp Pharmacol. 2021;13:308–328. DOI: 10.2147/JEP.S267383https://pubmed.ncbi.nlm.nih.gov/33776489/TchounwouPDasariSNoubissiFRayPKumarSAdvances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapyJ. Exp Pharmacol20211330832810.2147/JEP.S267383https://pubmed.ncbi.nlm.nih.gov/33776489/Open DOISearch in Google Scholar
Valgimigli L. Lipid peroxidation and antioxidant protection. Biomolecules. 2023;13:1291,1–33. https://doi.org/10.3390/biom13091291 [https://www.mdpi.com/journal/biomoleculesValgimigliLLipid peroxidation and antioxidant protectionBiomolecules2023131291,133https://doi.org/10.3390/biom13091291 [https://www.mdpi.com/journal/biomoleculesSearch in Google Scholar
Volchegorsky I, Nalimov A, Yarovinsky B, Livshits R (1989). Comparison of different approaches to the determination of lipid peroxidation products in heptane-isopropanol blood extracts. Vopr. Med. Chime. 1989;35(1): 127–131. (Published in Russian). [https://www.researchgate.net/publication/20415627VolchegorskyINalimovAYarovinskyBLivshitsR1989Comparison of different approaches to the determination of lipid peroxidation products in heptane-isopropanol blood extractsVopr. Med. Chime1989351127131(Published in Russian). [https://www.researchgate.net/publication/20415627Search in Google Scholar
Yavroyan Zh, Hovhannisyan A, Hakobyan N, Gevorgyan E. Cisplatin and estradiol separate and joint action on catalase activity in liver and kidney tissues of rats. Eurasian Union of Scientists (ESU). 2019;11(68):12–16. [DOI: 10.31618/ESU.2413-9335.2019.2.68.439 [https://www.researchgate.net/publication/338056613YavroyanZhHovhannisyanAHakobyanNGevorgyanECisplatin and estradiol separate and joint action on catalase activity in liver and kidney tissues of ratsEurasian Union of Scientists (ESU)20191168121610.31618/ESU.2413-9335.2019.2.68.439[https://www.researchgate.net/publication/338056613Open DOISearch in Google Scholar