Accesso libero

Corrosion of Transparent Electrodes Study



[1] M. Panizza, G. Cerisola, Influence of anode material on the electrochemical oxidation of 2-naphthol: Part 2. Bulk electrolysis experiments, Electrochim. Acta, 49 (2004) 3221-26.10.1016/j.electacta.2004.02.036 Search in Google Scholar

[2] L. Cirıaco, C. Anjo, J. Correia, M. J. Pacheco, and A. Lopes, Electrochemical degradation of Ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes, Electrochim. Acta, 54:5 (2009)1464-72.10.1016/j.electacta.2008.09.022 Search in Google Scholar

[3] A. F. Maged, L. A. Nada, M. Amin. 2015. Effect of gamma radiation in undoped SnO2 thin films. Phys. Sci. Int. J 7 (1) (2015) 20–27.10.9734/PSIJ/2015/17250 Search in Google Scholar

[4] Y. Li, F. Lian, L. Ma, C. Liu, L. Yang, X. Sun, K. Chou, Fluoroethylene Carbonate as Electrolyte Additive for Improving the electrochemical performances of High-Capacity Li1.16[Mn0.75Ni0.25]0.84O2 Material, Electrochim. Acta, 168 (2015)261-270.10.1016/j.electacta.2015.04.030 Search in Google Scholar

[5] Z. Yang, S. Zhao, W. Jiang, X. Sun, Y. Meng, C. Sun and S. Ding, Carbon-supported SnO2 nanowire arrays with enhanced lithium storage properties, Electrochim. Acta., 158 (2015) 321.10.1016/j.electacta.2015.01.146 Search in Google Scholar

[6] E. Comini, G. Faglia, G. Sberveglieri, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl. Phys. Lett., 81 (2002) 1869.10.1063/1.1504867 Search in Google Scholar

[7] A. Kay, M. Gratzel, Dye-Sensitized Core−Shell Nanocrystals:  Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide, Chem. Mater., 14:7 (2002) 2930-35.10.1021/cm0115968 Search in Google Scholar

[8] A. F. Maged, S. A. Fayek, H. M. Hosni, M. M. Ibrahim, L. A. M. Nada, and M Amin, Natural dye solar cell: Conductive transparent oxide, photo anode, sensitizers, electrolyte, and γ-radiation response, Int. J. Green Energy, (2021) 1-13.10.1080/15435075.2021.1979983 Search in Google Scholar

[9] J. Kong, Z. Rui, H. Ji and Y. Tong, Facile synthesis of ZnO/SnO2 hetero nanotubes with enhanced electrocatalytic property Catal. Today. 258 (2015) 75-82.10.1016/j.cattod.2015.04.011 Search in Google Scholar

[10] A. Boumeddiene, F. Bouamra, M. Rérat, H. Belkhir, Structural and electronic properties of Sb-doped SnO2 (1 1 0) surface: A first principles study, Appl. Surf. Sci., 284 (2013) 581-87.10.1016/j.apsusc.2013.07.137 Search in Google Scholar

[11] X. Liu, G. Zhou, S. W. Or, Y. Sun, Fe/amorphous SnO2 core–shell structured nanocapsules for microwave absorptive and electrochemical performance, RSC Adv., 4 (2014) 51389.10.1039/C4RA08998G Search in Google Scholar

[12] B. Yang, J. Wang, C. Jiang, J. Li, G. Yu, S. Deng, S. Lu, P. Zhang, C. Zhu, Q. Zhuo, Electrochemical mineralization of perfluorooctane sulfonate by novel F and Sb co-doped Ti/SnO2 electrode containing Sn-Sb interlayer, Chem. Eng. J., 316 (2017) 296-304.10.1016/j.cej.2017.01.105 Search in Google Scholar

[13] L. Xu, H. Duan, Y. Wang, Y. Lian, Effects of Reaction Conditions on the Morphology and Property of Sb Doped SnO2 Nanorods Anode, Int. J. Electrochem. Sci., 13 (2018) 2731 – 2744.10.20964/2018.03.53 Search in Google Scholar

[14] F. Kormos, I. Rotariu, G. Tolai, M. Pávai, C. Roman, E. Kálmán, The stability of SnO2:Sb (ATO) nanostructured protecting films on glass, Dig. J. Nanomater. Biostructures 1:3 (2006) 107 – 114 Search in Google Scholar

[15] G. Vourlias, N. Pistofidis, G. Stergioudis, E.K. Polychroniadis, Structural study near the film/substrate interface of a plasma sprayed tin coating on low carbon steel, J. Alloys Compd., 416 (2006) 183-187.10.1016/j.jallcom.2005.09.007 Search in Google Scholar

[16] S. T. Rajan, A. Arockiarajan, Thin film metallic glasses for bioimplants and surgical tools: A review. J. Alloys Compd., 876 (2021) 159939.10.1016/j.jallcom.2021.159939 Search in Google Scholar

[17] K. V. Chauhana, S. K. Rawala, A review paper on tribological and mechanical properties of ternary nitride based coatings. Procedia Technol. 14 (2014) 430 – 437.10.1016/j.protcy.2014.08.055 Search in Google Scholar

[18] S. K. Singh, S. Chattopadhyaya, A. Pramanik, S. Kumar, Wear behavior of chromium nitride coating in dry condition at lower sliding velocity and load. Int. J. Adv. Manuf. Technol., 96(5) (2018)1665-1675.10.1007/s00170-017-0796-x Search in Google Scholar

[19] C. Lorenzo-Martin, O. Ajayi, A. Erdemir, G.R. Fenske, R. Wei, Effect of microstructure and thickness on the friction and wear behavior of CrN coatings. Wear, 302(1-2) (2013) 963-971.10.1016/j.wear.2013.02.005 Search in Google Scholar

[20] P. Yiu, W. Diyatmika, N. Bönninghoff, Y. Lu, B. Lai, J. P. Chu, Thin film metallic glasses: Properties, applications and future, J. Appl. Phys. 127:3, (2020) 030901.10.1063/1.5122884 Search in Google Scholar

[21] I. A. Rastegaev, I. I. Rastegaeva, D. L. Merson, V. A. Korotkov, The Wear Features of a Plasma Thin-Film Coating on High-Speed Steel, J. Frict. Wear, 41(2) (2020) 160–168.10.3103/S1068366620020117 Search in Google Scholar

[22] L.-M. Berger, Hard but slippery-titanium hardmetal coatings have industrial potential. Met. Powder Rep., 60:5 (2005) 28–31.10.1016/S0026-0657(05)70410-0 Search in Google Scholar

[23] E. Laouini Æ M. Hamdani Æ M. I. S. Pereira Æ J. Douch ÆM. H. Mendonç Æ Y. Berghoute Æ R. N. Singh, Electrochemical impedance spectroscopy investigation of spinel type cobalt oxide thin film electrodes in alkaline medium, J. Appl. Electrochem. 38 (2008) 1485–1494.10.1007/s10800-008-9593-4 Search in Google Scholar

[24] A. F. Maged, M. Amin, H. Osman, L. A. M. Nada, Plasmonic nanostructures of SnO2: Sb thin film under gamma radiation response. Materials Science-Poland 38 (1) (2020) 62–72.10.2478/msp-2020-0015 Search in Google Scholar

[25] S. K. Chauhan, R. Kumar, S. Nadanasabapathy, A. S. Bawa, Detection Methods for Irradiated Foods, Compr. Rev. Food Sci, 8(1) (2009) 4-16.10.1111/j.1541-4337.2008.00063.x Search in Google Scholar

[26] A. G. Chmielewski, M. Haji-Saeid, Radiation technologies: past, present and future. Radiat. Phys. Chem. 71(1-2) (2004) 17-21.10.1016/j.radphyschem.2004.05.040 Search in Google Scholar

[27] A.F. Maged, H.M. Hosni, S.A. Fayek, M. Amin, H. Osman, L.A.M. Nada, Investigation of TiO2 nanoparticles: thermal kinetics and gamma radiation effects. Silicon. 11(1) (2019) 313–322.10.1007/s12633-018-9857-5 Search in Google Scholar

[28] A.F. Maged, M. R. Balboul, S. M. Alyamany, Investigation of the Collected Soot Powder: Thermal Kinetics Analysis, γ-adiation Treatment, and Clean Environment. Emiss. Control Sci. Technol. 7 (2021)117–123.10.1007/s40825-020-00177-9 Search in Google Scholar

[29] A.F. Maged, N.L. Moussa, A. Abdel-Galil, Optical characterization and γ-irradiation response of conductive transparent oxide of SnO2:Sb films, Radiat. Phys. Chem. 179 (2021) 10926710.1016/j.radphyschem.2020.109267 Search in Google Scholar

[30] M. Kojima, H. Kato, M. Gatto, Blackening of tin oxide thin films heavily doped with antimony, Phil. Mag. B, 68:2 (1993) 215-222.10.1080/01418639308226402 Search in Google Scholar

[31] F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S.M. Zakeeruddin, M. Grätzel, Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J. Phys. Chem. C, 111 (2007) 6550.10.1021/jp066178a Search in Google Scholar

[32] F. Kormos, I. Rotariu, G. Tolai, M. Pávai, C. Roman, E. Kálmán, The stability of SnO2:Sb (ATO) nanostructured protecting films on glass, Dig. J. Nanomater. Biostructures, 3 (2006) 107 – 114. Search in Google Scholar

[33] A. Korjenic, K. S. Raja, Electrochemical stability of fluorine doped tin oxide (FTO) coating at different ph conditions, J. Electrochem. Soc. 166 (6) (2019)169-184.10.1149/2.0811906jes Search in Google Scholar

Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Materials Sciences, Functional and Smart Materials