1. bookVolume 69 (2019): Edizione 4 (December 2019)
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Screening of flavonoid aglycons’ metabolism mediated by the human liver cytochromes P450

Pubblicato online: 21 Oct 2019
Volume & Edizione: Volume 69 (2019) - Edizione 4 (December 2019)
Pagine: 541 - 562
Accettato: 23 Jul 2019
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. J. A. Yáñez, P. K. Andrews and N. M. Davies, Methods of analysis and separation of chiral flavonoids, J. Chromatogr. B848 (2007) 159–181; https://doi.org/10.1016/j.jchromb.2006.10.05210.1016/j.jchromb.2006.10.052Search in Google Scholar

2. J. Xiao and P. Högger, Metabolism of dietary flavonoids in liver microsomes, Curr. Drug Metab.14 (2013) 381–391; https://doi.org/10.2174/138920021131404000310.2174/1389200211314040003Search in Google Scholar

3. B. H. Havsteen, The biochemistry and medical significance of the flavonoids, Pharmacol. Therapeut. 96 (2002) 67–202; https://doi.org/10.1016/S0163-7258(02)00298-X10.1016/S0163-7258(02)00298-XSearch in Google Scholar

4. J. Viskupičová, M. Ondrejovič and E. Šturdík, Bioavailability and metabolism of flavonoids, J. Food Nutr. Res.47 (2008) 151–162.Search in Google Scholar

5. F. P. Guengerich, Cytochrome P450 and chemical toxicology, Chem. Res. Toxicol.21 (2008) 70–83; https://doi.org/10.1021/tx700079z10.1021/tx700079zSearch in Google Scholar

6. V. P. Androutsopoulos, A. Papakyriakou, D. Vourloumis and D. A. Spandidos, Comparative CYP1A1 and CYP1B1 substrate and inhibitor profile of dietary flavonoids, Bioorg. Med. Chem.19 (2011) 2842–2849; https://doi.org/10.1016/j.bmc.2011.03.04210.1016/j.bmc.2011.03.042Search in Google Scholar

7. S. E. Nielsen, V. Breinholt, U. Justesen, C. Cornett and L. O. Dragsted, In vitro biotransformation of flavonoids by rat liver microsomes, Xenobiotica28 (1998) 389–401; https://doi.org/10.1080/00498259823949810.1080/004982598239498Search in Google Scholar

8. V. M. Breinholt, E. A. Offord, C. Brouwer, S. E. Nielsen, K. Brøsen and T. Friedberg, In vitro investigation of cytochrome P450-mediated metabolism of dietary flavonoids, Food Chem. Toxicol.40 (2002) 609–616; https://doi.org/10.1016/S0278-6915(01)00125-910.1016/S0278-6915(01)00125-9Search in Google Scholar

9. A. Gradolatto, M. C. Canivenc-Lavier, J. P. Basly, M. H. Siess and C. Teyssier, Metabolism of apigenin by rat liver phase I and phase II enzymes and by isolated perfused rat liver, Drug Metab. Dispos.32 (2004) 58–65; https://doi.org/10.1124/dmd.32.1.5810.1124/dmd.32.1.58Search in Google Scholar

10. V. Androutsopoulos, N. Wilsher, R. R. J. Arroo and G. A. Potter, Bioactivation of the phytoestrogen diosmetin by CYP1 cytochromes P450, Cancer Lett.274 (2009) 54–60; https://doi.org/10.1016/j.canlet.2008.08.03210.1016/j.canlet.2008.08.032Search in Google Scholar

11. S. E. Nielsen, V. Breinholt, C. Cornett and L. O. Dragsted, Biotransformation of the citrus flavone tangeretin in rats. Identification of metabolites with intact flavane nucleus, Food Chem. Toxicol.38 (2000) 739–746; https://doi.org/10.1016/S0278-6915(00)00072-710.1016/S0278-6915(00)00072-7Search in Google Scholar

12. V. M. Breinholt, S. E. Rasmussen, K. Brøsen and T. H. Friedberg, In vitro metabolism of genistein and tangeretin by human and murine cytochrome P450s, Pharmacol. Toxicol.93 (2003) 14–22; https://doi.org/10.1034/j.1600-0773.2003.930102.x10.1034/j.1600-0773.2003.930102.xSearch in Google Scholar

13. Y. Otake and T. Walle, Oxidation of the flavonoids galangin and kaempferide by human liver microsomes and CYP1A1, CYP1A2 and CYP2C9, Drug Metab. Dispos.30 (2002) 103–105; https://doi.org/10.1124/dmd.30.2.10310.1124/dmd.30.2.103Search in Google Scholar

14. S. E. Kulling, D. M. Honig and M. Metzler, Oxidative metabolism of the soy isoflavones daidzein and genistein in humans in vitro and in vivo, J. Agric. Food Chem. 49 (2001) 3024–3033; https://doi.org/10.1021/jf001269510.1021/jf0012695Search in Google Scholar

15. S. E. Kulling, D. M. Honig, T. J. Simat and M. Metzler, Oxidative in vitro metabolism of the soy phytoestrogens daidzein and genistein, J. Agric. Food Chem.48 (2000) 4963–4972; https://doi.org/10.1021/jf000524i10.1021/jf000524iSearch in Google Scholar

16. S. E. Kulling, L. Lehmann and M. Metzler, Oxidative metabolism and genotoxic potential of major isoflavone phytoestrogens, J. Chromatogr. B777 (2002) 211–218; https://doi.org/10.1016/S1570-0232(02)00215-510.1016/S1570-0232(02)00215-5Search in Google Scholar

17. M. Hu, K. Krausz, J. Chen, X. Ge, J. Li, H. L. Gelboin and F. J. Gonzalez, Identification of CYP1A2 as the main isoform for the phase I hydroxylated metabolism of genistein and a prodrug converting enzyme of methylated isoflavones, Drug Metab. Dispos.31 (2003) 924–931; https://doi.org/10.1124/dmd.31.7.92410.1124/dmd.31.7.924Search in Google Scholar

18. J. Bursztyka, E. Perdu, J. Tulliez, L. Debrauwer, G. Delous, C. Canlet, G. De Sousa, R. Rahmani, E. Benfenati and J. P. Cravedi, Comparison of genistein metabolism in rats and humans using liver microsomes and hepatocytes, Food Chem. Toxicol.46 (2008) 939–948; https://doi.org/10.1016/j.fct.2007.10.02310.1016/j.fct.2007.10.023Search in Google Scholar

19. K. M. Atherton, E. Mutch and D. Ford, Metabolism of the soyabean isoflavone daidzein by CYP1A2 and the extra-hepatic CYPs 1A1 and 1B1 affects biological activity, Biochem. Pharmacol.72 (2006) 624–631; https://doi.org/10.1016/j.bcp.2006.05.01510.1016/j.bcp.2006.05.015Search in Google Scholar

20. H. Doostdar, M. D. Burke and R. T. Mayer, Bioflavonoids: selective substrates and inhibitors for cytochrome P450 CYP1A and CYP1B1, Toxicology144 (2000) 31–38; https://doi.org/10.1016/S0300-483X(99)00215-210.1016/S0300-483X(99)00215-2Search in Google Scholar

21. J. M. Young, W. Xiaodong and E. M. Marilyn, Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism, Toxicol. In Vitro20 (2006) 187–210; https://doi.org/10.1016/j.tiv.2005.06.04810.1016/j.tiv.2005.06.04816289744Search in Google Scholar

22. Y. Kimura, H. Ito, R. Ohnishi and T. Hatano, Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity, Food Chem. Toxicol.48 (2010) 429–435; https://doi.org/10.1016/j.fct.2009.10.04110.1016/j.fct.2009.10.04119883715Search in Google Scholar

23. M. Bojić, C. A. Sedgeman, L. D. Nagy and F. P. Guengerich, Aromatic hydroxylation of salicylic acid and aspirin by human cytochromes P450, Eur. J. Pharm. Sci.73 (2015) 49–56; https://doi.org/10.1016/j.ejps.2015.03.01510.1016/j.ejps.2015.03.015441492025840124Search in Google Scholar

24. M. Medić-Šarić, V. Rastija and M. Bojić, Recent advances in the application of high performance liquid chromatography in the analysis of polyphenols in wine and propolis, J. AOAC Int.94 (2011) 32–42.10.1093/jaoac/94.1.32Search in Google Scholar

25. M. Barbarić, K. Mišković, M. Bojić, M. Baus Lončar, A. Smolčić-Bubalo, Ž. Debeljak and M. Medić-Šarić, Chemical composition of the ethanolic propolis extracts and its effect on HeLa cells, J. Ethnopharmacol.135 (2011) 772–778; https://doi.org/10.1016/j.jep.2011.04.01510.1016/j.jep.2011.04.01521515353Search in Google Scholar

26. D. Tsimogiannis, M. Samiotaki, G. Panayotou and V. Oreopoulou, Characterization of flavonoid subgroups and hydroxy substitution by HPLC-MS/MS, Molecules12 (2007) 593–606; https://doi.org/10.3390/1203059310.3390/12030593614935317851414Search in Google Scholar

27. F. Cuyckens and M. Claeys, Mass spectrometry in the structural analysis of flavonoids, J. Mass Spectrom.39 (2004) 1–15; https://doi.org/10.1002/jms.58510.1002/jms.58514760608Search in Google Scholar

28. F. P. Guengerich, Human Cytochrome P450 Enzymes, in Cytochrome P450: Structure, Mechanism, and Biochemistry (Ed. P. R. Ortiz de Montellano), 4th ed., Springer Int. Publ. Switzerland, Cambridge 2015; https://doi.org/10.1007/978-3-319-12108-6_910.1007/978-3-319-12108-6_9Search in Google Scholar

29. V. P. Androutsopoulos, S. Mahale, R. R. J. Arroo and G. Potter, Anticancer effects of the flavonoid diosmetin on cell cycle progression and proliferation of MDA-MB 468 breast cancer cells due to CYP1 activation, Oncol. Rep.21 (2009) 1525–1528; https://doi.org/10.3892/or_0000038410.3892/or_0000038419424633Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo