1. bookVolume 69 (2019): Edizione 4 (December 2019)
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Open Access

Influence of flavonoids’ lipophilicity on platelet aggregation

Pubblicato online: 21 Oct 2019
Volume & Edizione: Volume 69 (2019) - Edizione 4 (December 2019)
Pagine: 607 - 619
Accettato: 23 Jul 2019
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. P. Knekt, R. Jarvinen, A. Reunanen and J. Maatela, Flavonoid intake and coronary mortality in Finland: a cohort study, Brit. Med. J.312 (1996) 478–481; https://doi.org/10.1136/bmj.312.7029.47810.1136/bmj.312.7029.47823499218597679Search in Google Scholar

2. M. L. McCullough, J. J. Peterson, R. Patel, P. F. Jacques, R. Shah and J. T. Dwyer, Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults, Am. J. Clin. Nutr.95 (2012) 454–464; https://doi.org/10.3945/ajcn.111.01663410.3945/ajcn.111.016634326007222218162Search in Google Scholar

3. M. L. Liang, X. W. Da, A. D. He, G. Q. Yao, W. Xie, G. Liu, J. Z. Xiang and Z. Y. Ming, Pentamethylquercetin (PMQ) reduces thrombus formation by inhibiting platelet function, Sci. Rep.5 (2015) 11142 (11 pages); https://doi.org/10.1038/srep1114210.1038/srep11142446191926059557Search in Google Scholar

4. Y. Wang, J. Tang, H. Zhu, X. Jiang, J. Liu, W. Xu, H. Ma, Q. Feng, J. Wu, M. Zhao and S. Peng, Aqueous extract of Rabdosia rubescens leaves: forming nanoparticles, targeting P-selectin, and inhibiting thrombosis, Int. J. Nanomed.10 (2015) 6905–6918; https://doi.org/10.2147/IJN.S9131610.2147/IJN.S91316463956326604756Search in Google Scholar

5. S. Vaiyapuri, H. Roweth, M. S. Ali, A. J. Unsworth, A. R. Stainer, G. D. Flora, M. Crescente, C. I. Jones, L. A. Moraes and J. M. Gibbins, Pharmacological actions of nobiletin in the modulation of platelet function, Br. J. Pharmacol. 172 (2015) 4133–4145; https://doi.org/10.1111/bph.1319110.1111/bph.13191454361825988959Search in Google Scholar

6. E. S. Park, Y. Lim, S. H. Lee, B. M. Kwon, H. S. Yoo, J. T. Hong and Y. P. Yun, Antiplatelet activity of obovatol, a biphenolic component of Magnolia obovata, in rat arterial thrombosis and rabbit platelet aggregation, J. Atheroscler. Thromb. 18 (2011) 659–669; https://doi.org/10.5551/jat.742710.5551/jat.742721512279Search in Google Scholar

7. Y. R. Jin, X. H. Han, Y. H. Zhang, J. J. Lee, Y. Lim, J. H. Chung and Y. P. Yun, Antiplatelet activity of hesperetin, a bioflavonoid, is mainly mediated by inhibition of PLC-gamma2 phosphorylation and cyclooxygenase-1 activity, Atherosclerosis194 (2007) 144–152; https://doi.org/10.1016/j.atherosclerosis.2006.10.01110.1016/j.atherosclerosis.2006.10.01117092506Search in Google Scholar

8. P. Pignatelli, F. M. Pulcinelli, A. Celestini, L. Lenti, A. Ghiselli, P. P. Gazzaniga and F. Violi, The flavonoids quercetin and catechin synergistically inhibit platelet function by antagonizing the intracellular production of hydrogen peroxide, Am. J. Clin. Nutr. 72 (2000) 1150–1155; https://doi.org/10.1093/ajcn/72.5.115010.1093/ajcn/72.5.115011063442Search in Google Scholar

9. A. B. Hendrich, Flavonoid-membrane interactions: possible consequences for biological effects of some polyphenolic compounds, Acta. Pharmacol. Sin. 27 (2006) 27–40; https://doi.org/10.1111/j.1745-7254.2006.00238.x10.1111/j.1745-7254.2006.00238.x16364208Search in Google Scholar

10. P. I. Oteiza, A. G. Erlejman, S. V. Verstraeten, C. L. Keen and C. G. Fraga, Flavonoid-membrane interactions: a protective role of flavonoids at the membrane surface? Clin. Dev. Immunol. 12 (2005) 19–25; https://doi.org/10.1080/1044667041000172216810.1080/10446670410001722168227071715712595Search in Google Scholar

11. T. Lhermusier, H. Chap and B. Payrastre, Platelet membrane phospholipid asymmetry: from the characterization of a scramblase activity to the identification of an essential protein mutated in Scott syndrome, J. Thromb. Haemost. 9 (2011) 1883–1891; https://doi.org/10.1111/j.1538-7836.2011.04478.x10.1111/j.1538-7836.2011.04478.xSearch in Google Scholar

12. C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 46 (2001) 3–26; https://doi.org/10.1016/S0169-409X(00)00129-010.1016/S0169-409X(00)00129-0Search in Google Scholar

13. G. L. Biagi, A. M. Barbaro, O. Gandolfi, M. C. Guerra and G. Cantelli-Forti, Rm values of steroids as an expression of their lipophilic character in structure-activity studies, J. Med. Chem. 18 (1975) 873–883; https://doi.org/10.1021/jm00243a00310.1021/jm00243a003Search in Google Scholar

14. E. Kłosińska-Szmurło, F. A. Pluciński, M. Grudzień, K. Betlejewska-Kielak, J. Biernacka and A. P. Mazurek, Experimental and theoretical studies on the molecular properties of ciprofloxacin, norfloxacin, pefloxacin, sparfloxacin, and gatifloxacin in determining bioavailability, J. Biol. Phys.40 (2014) 335–345; https://doi.org/10.1007/s10867-014-9354-z10.1007/s10867-014-9354-zSearch in Google Scholar

15. B. J. Bennion, N. A. Be, M. W. McNerney, V. Lao, E. M. Carlson, C. A. Valdez, M. A. Malfatti, H. A. Enright, T. H. Nguyen, F. C. Lightstone and T. S. Carpenter, Predicting a drug’s membrane permeability: A computational model validated with in vitro permeability assay data, J. Phys. Chem. B.121 (2017) 5228–5237; https://doi.org/10.1021/acs.jpcb.7b0291410.1021/acs.jpcb.7b02914Search in Google Scholar

16. A. Daina, O. Michielin and V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017) 42717 (13 pages); https://doi.org/10.1038/srep4271710.1038/srep42717Search in Google Scholar

17. M. Bojić, Ž. Debeljak, M. Tomičić, M. Medić-Šarić and S. Tomić, Evaluation of antiaggregatory activity of flavonoid aglycone series, Nutrition J. 10 (2011) 73 (8 pages); https://doi.org/10.1186/1475-2891-10-7310.1186/1475-2891-10-73Search in Google Scholar

18. A. Brocchieri, L. Pacchiarini, A. Saporiti and G. Grignani, In vitro effect of verapamil on platelet activation induced by ADP, collagen or thrombin, Platelets6 (1995) 195–199; https://doi.org/10.3109/0953710950907845410.3109/09537109509078454Search in Google Scholar

19. S. A. Saeed, H. Rasheed, F. A. Fecto, M. I. Achakzai, R. Ali, J. D. Connor and A. U. Gilani, Signalling mechanisms mediated by G-protein coupled receptors in human platelets, Acta Pharmacol. Sin. 25 (2004) 887–889.Search in Google Scholar

20. J. W. Heemskerk, R. W. Farndale and S. O. Sage, Effects of U73122 and U73343 on human platelet calcium signalling and protein tyrosine phosphorylation, Biochim. Biophys. Acta1355 (1997) 81–88; https://doi.org/10.1016/S0167-4889(96)00113-910.1016/S0167-4889(96)00113-9Search in Google Scholar

21. T. Wu, M. He, X. Zang, X. Zhou, T. Qiu, S. Pan and X. Xu, A structure-activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect, Biochim. Biophys. Acta1828 (2013) 2751–2756; https://doi.org/10.1016/j.bbamem.2013.07.02910.1016/j.bbamem.2013.07.02923938956Search in Google Scholar

22. M. Shichijo, N. Yamamoto, H. Tsujishita, M. Kimata, H. Nagai and T. Kokubo, Inhibition of syk activity and degranulation of human mast cells by flavonoids, Biol. Pharm. Bull. 26 (2003) 1685–1690; https://doi.org/10.1248/bpb.26.168510.1248/bpb.26.1685Search in Google Scholar

23. A. Oliveira Filho, H. M. Fernandes, T. J. C. Assis, D. R. Meireles, O. Edeltrudes, E. Lima and H. L. F. Pêssoa, Pharmacological and toxicological analysis of flavonoid 5,7,4’-trimethoxyflavone: An in silico approach, IJPPR7 (2015) 431–434.Search in Google Scholar

24. C. van Dijk, A. J. Driessen and K. Recourt, The uncoupling efficiency and affinity of flavonoids for vesicles, Biochem. Pharmacol. 60 (2000) 1593–1600; https://doi.org/10.1016/S0006-2952(00)00488-310.1016/S0006-2952(00)00488-3Search in Google Scholar

25. A. Arora, T. M. Byrem, M. G. Nair and G. M. Strasburg, Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids, Arch. Biochem. Biophys. 373 (2000) 102–109; https://doi.org/10.1006/abbi.1999.152510.1006/abbi.1999.1525Search in Google Scholar

26. S. Kitagawa, M. Orinaka and H. Hirata, Depth-dependent change in membrane fluidity by phenolic compounds in bovine platelets and its relationship with their effects on aggregation and adenylate cyclase activity, Biochim. Biophys. Acta1179 (1993) 277–282; https://doi.org/10.1016/0167-4889(93)90083-210.1016/0167-4889(93)90083-2Search in Google Scholar

27. N. Vlasic, M. S. Medow, S. M. Schwarz, K. A. Pritchard and M. B. Stemerman, Lipid fluidity modulates platelet aggregation and agglutination in vitro, Life Sci.53 (1993) 1053–1060; https://doi.org/10.1016/0024-3205(93)90258-510.1016/0024-3205(93)90258-5Search in Google Scholar

28. K. Yoshida, S. Nagatoishi, D. Kuroda, N. Suzuki, T. Murata and K. Tsumoto, Phospholipid membrane fluidity alters ligand binding activity of a G protein-coupled receptor by shifting the conformational equilibrium, Biochemistry58 (2019) 504–508; https://doi.org/10.1021/acs.biochem.8b01194 (in press)10.1021/acs.biochem.8b0119430618239Search in Google Scholar

29. M. Bojić, Ž. Debeljak, M. Medić-Šarić and M. Tomičić, Interference of selected flavonoid aglycons in platelet aggregation assay, Clin. Chem. Lab. Med.50 (2012) 1403–1408; https://doi.org/10.1515/cclm-2011-096010.1515/cclm-2011-096022868805Search in Google Scholar

30. L. M. Ostertag, N. O’Kennedy, G. W. Horgan, P. A. Kroon, G. G. Duthie and B. de Roos, In vitro anti-platelet effects of simple plant-derived phenolic compounds are only found at high, non-physiological concentrations, Mol. Nutr. Food Res. 55 (2011) 1624–1636; https://doi.org/10.1002/mnfr.20110013510.1002/mnfr.20110013521898791Search in Google Scholar

31. S. Vaiyapuri, M. S. Ali, L. A. Moraes, T. Sage, K. R. Lewis, C. I. Jones and J. M. Gibbins, Tangeretin regulates platelet function through inhibition of phosphoinositide 3-kinase and cyclic nucleotide signalling, Arterioscler. Thromb. Vasc. Biol. 33 (2013) 2740–2749; https://doi.org/10.1161/ATVBAHA.113.30198810.1161/ATVBAHA.113.30198824135020Search in Google Scholar

32. T. Gremmel, R. Koppensteiner and S. Panzer, Comparison of aggregometry with flow cytometry for the assessment of agonists’-induced platelet reactivity in patients on dual antiplatelet therapy, PLoS One10 (2015) e0129666 (13 pages); https://doi.org/10.1371/journal.pone.012966610.1371/journal.pone.0129666446116426058047Search in Google Scholar

33. K. Koltai, G. Kesmarky, G. Feher, A. Tibold and K. Toth, Platelet aggregometry testing: Molecular mechanisms, techniques and clinical implications, Int. J. Mol. Sci.18 (2017) 1803 (21 pages); https://doi.org/10.3390/ijms1808180310.3390/ijms18081803557819028820484Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo