Accesso libero

Exopolysaccharides Produced by Lactobacillus rhamnosus KL 53A and Lactobacillus casei Fyos Affect Their Adhesion to Enterocytes

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Broadbent JR, Neeno-Eckwall EC, Stahl B, Tandee K, Cai H, Morovic W, Horvath P, Heidenreich J, Perna NT, Barrangou R et al. 2012. Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BMC Genomics. 13:533.BroadbentJRNeeno-EckwallECStahlBTandeeKCaiHMorovicWHorvathPHeidenreichJPernaNTBarrangouRet al.2012Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptationBMC Genomics.1353310.1186/1471-2164-13-533Search in Google Scholar

Cockburn DW, Koropatkin NM. 2016. Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J Mol Biol. 428:3230–3252.CockburnDWKoropatkinNM.2016Polysaccharide degradation by the intestinal microbiota and its influence on human health and diseaseJ Mol Biol.4283230325210.1016/j.jmb.2016.06.021Search in Google Scholar

Comstock LE, and Kasper DL. 2006. Bacterial glycans: key mediators of diverse host immune responses. Cell. 126:847–850.ComstockLE, and KasperDL.2006Bacterial glycans: key mediators of diverse host immune responsesCell.12684785010.1016/j.cell.2006.08.021Search in Google Scholar

Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, Pudlo NA, Kitamoto S, Terrapon N, Muller A et al. 2016. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167: 1339–1353.DesaiMSSeekatzAMKoropatkinNMKamadaNHickeyCAWolterMPudloNAKitamotoSTerraponNMullerAet al.2016A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibilityCell1671339135310.1016/j.cell.2016.10.043Search in Google Scholar

De Vuyst L, Degeest B. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev. 23:153–177.De VuystLDegeestB.1999Heteropolysaccharides from lactic acid bacteriaFEMS Microbiol Rev.2315317710.1016/S0168-6445(98)00042-4Search in Google Scholar

Furukawa N, Matsuoka A, Takahashi T, Yamanaka Y. 2000. Antimetastic effect of kefir grain components on Lewis lung carcinoma and highly metastic B16 melanoma in mice. J Agric Sci. Tokyo Nogyo Daigaku 45: 62–70.FurukawaNMatsuokaATakahashiTYamanakaY.2000Antimetastic effect of kefir grain components on Lewis lung carcinoma and highly metastic B16 melanoma in miceJ Agric Sci. Tokyo Nogyo Daigaku456270Search in Google Scholar

Galle S, Arendt EK. 2014. Exopolysaccharides from sourdough lactic acid bacteria. Crit Rev Food. Sci. 54:891–901.GalleSArendtEK.2014Exopolysaccharides from sourdough lactic acid bacteriaCrit Rev Food. Sci.5489190110.1080/10408398.2011.61747424499068Search in Google Scholar

Gopal PK, Crow VL. 1993. Characterization of loosely associated material from the cell surface of Lactococcus lactis subsp. cremoris E8 and its phage-resistant variant strain 398. Appl Environ Microbiol. 59:3177–3182.GopalPKCrowVL.1993Characterization of loosely associated material from the cell surface of Lactococcus lactis subsp. cremoris E8 and its phage-resistant variant strain 398Appl Environ Microbiol.593177318210.1128/aem.59.10.3177-3182.199318243416349058Search in Google Scholar

Korakli M, Ganzle MG, Vogel RF. 2002. Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J Appl Microbiol. 92:958–965.KorakliMGanzleMGVogelRF.2002Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensisJ Appl Microbiol.9295896510.1046/j.1365-2672.2002.01607.x11972702Search in Google Scholar

Lebeer S, Verhoeven TLA, Francius G, Schoofs G, Lambrichts I, Dufrêne Y, Vanderleyden J, De Keersmaecker SCJ. 2009. Identification of a gene cluster for the biosynthesis of a long, galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase. Appl Environ Microbiol. 75:3554–3563.LebeerSVerhoevenTLAFranciusGSchoofsGLambrichtsIDufrêneYVanderleydenJDe KeersmaeckerSCJ.2009Identification of a gene cluster for the biosynthesis of a long, galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferaseAppl Environ Microbiol.753554356310.1128/AEM.02919-08268730619346339Search in Google Scholar

Lopez-Siles M, Khanb TM, Duncanc SH, Harmsenb HJM, Garcia-Gila LJ, Flintc HJ. 2012. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol. 78:420–428.Lopez-SilesMKhanbTMDuncancSHHarmsenbHJMGarcia-GilaLJFlintcHJ.2012Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growthAppl Environ Microbiol.7842042810.1128/AEM.06858-11325572422101049Search in Google Scholar

Markowicz C, Kubiak P, Grajek W, Schmidt MT. 2016. Inactivation of Lactobacillus rhamnosus GG by fixation modifies its probiotic properties. Can J Microbiol. 62:72–82.MarkowiczCKubiakPGrajekWSchmidtMT.2016Inactivation of Lactobacillus rhamnosus GG by fixation modifies its probiotic propertiesCan J Microbiol.62728210.1139/cjm-2015-0249Search in Google Scholar

Miquel S, Martín R, Rossi O, Bermúdez-Humarán LG, Chatel JM, Sokol H, Thomas M, Wells JM, Langella P. 2013. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol. 16: 255–261.MiquelSMartínRRossiOBermúdez-HumaránLGChatelJMSokolHThomasMWellsJMLangellaP.2013Faecalibacterium prausnitzii and human intestinal healthCurr Opin Microbiol.1625526110.1016/j.mib.2013.06.003Search in Google Scholar

O’Toole PW, Cooney JC. 2008. Probiotic bacteria influence the composition and function of the intestinal microbiota. Interdiscip Perspect Infect Dis. 2008:175285.O’ToolePWCooneyJC.2008Probiotic bacteria influence the composition and function of the intestinal microbiotaInterdiscip Perspect Infect Dis.200817528510.1155/2008/175285Search in Google Scholar

Patel A, Prajapati JB. 2013. Food and health applications of exopolysaccharides produced by lactic acid bacteria. Adv Dairy Res 1:107.PatelAPrajapatiJB.2013Food and health applications of exopolysaccharides produced by lactic acid bacteriaAdv Dairy Res110710.4172/2329-888X.1000107Search in Google Scholar

Rios-Covian D, Cuesta I, Alvarez-Buylla JR, Ruas-Madiedo P, Gueimonde M, de los Reyes-Gavilán CG. 2016. Bacteroides fragilis metabolises exopolysaccharides produced by bifidobacteria. BMC Microbiology 16:150.Rios-CovianDCuestaIAlvarez-BuyllaJRRuas-MadiedoPGueimondeMde los Reyes-GavilánCG.2016Bacteroides fragilis metabolises exopolysaccharides produced by bifidobacteriaBMC Microbiology1615010.1186/s12866-016-0773-9Search in Google Scholar

Ruas-Madiedo P, de los Reyes-Gavilán CG. 2005. Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci. 88:843–856.Ruas-MadiedoPde los Reyes-GavilánCG.2005Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteriaJ Dairy Sci.8884385610.3168/jds.S0022-0302(05)72750-8Search in Google Scholar

Ruas-Madiedo P, Gueimonde M, Margolles A, de los Reyes-Gavilan CG, Salminen S. 2006. Exopolysaccharides produced by probiotic strain modify the adhesion of probiotics and enteropathogens to human intestinal mucus. J Food Prot. 69:2011–2015.Ruas-MadiedoPGueimondeMMargollesAde los Reyes-GavilanCGSalminenS.2006Exopolysaccharides produced by probiotic strain modify the adhesion of probiotics and enteropathogens to human intestinal mucusJ Food Prot.692011201510.4315/0362-028X-69.8.2011Search in Google Scholar

Ryan PM, Ross RP, Fitzgerald GF, Caplice NM, Stanton C. 2015. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food Funct. 6:679–693.RyanPMRossRPFitzgeraldGFCapliceNMStantonC.2015Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applicationsFood Funct.667969310.1039/C4FO00529E25580594Search in Google Scholar

Schmid J, Sieber V, Rehm B. 2015. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol. 6:496.SchmidJSieberVRehmB.2015Bacterial exopolysaccharides: biosynthesis pathways and engineering strategiesFront Microbiol.649610.3389/fmicb.2015.00496444373126074894Search in Google Scholar

Schmidt MT, Olejnik-Schmidt AK, Myszka K, Borkowska M, Grajek W. 2010. Evaluation of quantitative PCR measurement of bacterial colonization of epithelial cells. Pol J Microbiol. 59:89–93.SchmidtMTOlejnik-SchmidtAKMyszkaKBorkowskaMGrajekW.2010Evaluation of quantitative PCR measurement of bacterial colonization of epithelial cellsPol J Microbiol.59899310.33073/pjm-2010-013Search in Google Scholar

Stack HM, Kearney N, Stanton C, Fitzgerald GF, Ross RP. 2010. Association of beta-glucan endogenous production with increased stress tolerance of intestinal lactobacilli. Appl Environ Microbiol. 76:500–507.StackHMKearneyNStantonCFitzgeraldGFRossRP.2010Association of beta-glucan endogenous production with increased stress tolerance of intestinal lactobacilliAppl Environ Microbiol.7650050710.1128/AEM.01524-09Search in Google Scholar

Sun J, Le GW, Shi YH, Su GW. 2007. Factors involved in binding of Lactobacillus plantarum Lp6 to rat small intestinal mucus. Applied Microbiology. 44:79–85.SunJLeGWShiYHSuGW.2007Factors involved in binding of Lactobacillus plantarum Lp6 to rat small intestinal mucusApplied Microbiology.44798510.1111/j.1472-765X.2006.02031.xSearch in Google Scholar

Touyama M, Jin JS, Kibe R, Hayashi H, Benno Y. 2015. Quantification of Blautia wexlerae and Blautia luti in human faeces by real-time PCR using specific primers. Beneficial Microbes. 6:583–590.TouyamaMJinJSKibeRHayashiHBennoY.2015Quantification of Blautia wexlerae and Blautia luti in human faeces by real-time PCR using specific primersBeneficial Microbes.658359010.3920/BM2014.0133Search in Google Scholar

van Hijum SA, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IG. 2006. Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol. Mol Biol. 70:157–176.van HijumSAKraljSOzimekLKDijkhuizenLvan Geel-SchuttenIG.2006Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteriaMicrobiol. Mol Biol.7015717610.1128/MMBR.70.1.157-176.2006Search in Google Scholar

Welman AD, Maddox IS. 2003. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol. 21:269–274.WelmanADMaddoxIS.2003Exopolysaccharides from lactic acid bacteria: perspectives and challengesTrends Biotechnol.2126927410.1016/S0167-7799(03)00107-0Search in Google Scholar

Wexler AG, Bao Y, Whitney JC, Bobay LM, Xavier JB, Schofield WB, Barry NA, Russell AB, Tran BQ, Goo YA et al. 2016. Human symbionts inject and neutralize antibacterial toxins to persist in the gut. Proc Natl Acad Sci USA. 113:3639–3644.WexlerAGBaoYWhitneyJCBobayLMXavierJBSchofieldWBBarryNARussellABTranBQGooYAet al.2016Human symbionts inject and neutralize antibacterial toxins to persist in the gutProc Natl Acad Sci USA.1133639364410.1073/pnas.1525637113482260326957597Search in Google Scholar

eISSN:
2544-4646
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Microbiology and Virology