Accesso libero

Bionanocellulose – Properties, Acquisition And Perspectives Of Application In The Food Industry

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Abarca-Grau A.M., Burbank L.P., Paz H.D., Crespo-Rivas J.C., Marco-Noales E., López M.M., Vinardell J.M., Bodman S.B., Penyalver R.: Role for Rhizobium rhizogenes K84 Cell envelope polysaccharides in surface interactions. Appl. Environ. Microbiol. 78, 1644–1651 (2012)Abarca-GrauA.M.BurbankL.P.PazH.D.Crespo-RivasJ.C.Marco-NoalesE.LópezM.M.VinardellJ.M.BodmanS.B.PenyalverR.Role for Rhizobium rhizogenes K84 Cell envelope polysaccharides in surface interactionsAppl. Environ. Microbiol.7816441651201210.1128/AEM.07117-11Search in Google Scholar

Akoğlu A., Karahan A.G., Çakmakçı M.L., Çakır I.: Properties of bacterial cellulose and usage in food industry. GIDA/J. Food. 35, 127–134 (2010)AkoğluA.KarahanA.G.ÇakmakçıM.L.ÇakırI.Properties of bacterial cellulose and usage in food industryGIDA/J. Food.351271342010Search in Google Scholar

Arrieta M.P., Fortunati E., Dominici F., Rayón E., López J., Kenny J.M.: PLA-PHB/Cellulose based films: mechanical, barrier and disintegration properties. Polym. Degrad. Stabil. 107, 139–149 (2014)ArrietaM.P.FortunatiE.DominiciF.RayónE.LópezJ.KennyJ.M.PLA-PHB/Cellulose based films: mechanical, barrier and disintegration propertiesPolym. Degrad. Stabil.107139149201410.1016/j.polymdegradstab.2014.05.010Search in Google Scholar

Augimeri R.V., Varley A.J., Strap J.L.: Establishing a role for bacterial cellulose in environmental interactions: Lessons learned from diverse biofilm-producing. Proteobacteria Front. Microbiol. 6, 1282 (2015)AugimeriR.V.VarleyA.J.StrapJ.L.Establishing a role for bacterial cellulose in environmental interactions: Lessons learned from diverse biofilm-producingProteobacteria Front. Microbiol.61282201510.3389/fmicb.2015.01282Search in Google Scholar

Bae S.O., Shoda M.: Bacterial cellulose production by fedbatch fermentation in molasses medium. Biotechnol. Prog. 20, 1366–1371 (2004)BaeS.O.ShodaM.Bacterial cellulose production by fedbatch fermentation in molasses mediumBiotechnol. Prog.2013661371200410.1021/bp0498490Search in Google Scholar

Bae S.O., Shoda M.: Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Appl. Microbiol. Biotechnol. 67, 45–51 (2005)BaeS.O.ShodaM.Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentorAppl. Microbiol. Biotechnol.674551200510.1007/s00253-004-1723-2Search in Google Scholar

Bielecki S., Kalinowska H.: Biotechnologiczne nanomateriały. Post. Mikrobiol. 47, 163–169 (2008)BieleckiS.KalinowskaH.Biotechnologiczne nanomateriałyPost. Mikrobiol.471631692008Search in Google Scholar

Borzani W., Souza S.J.: Mechanism of the film thickness increasing during the bacterial production of cellulose on nonagitated liquid media. Biotechnol. Lett. 17, 1271–1272 (1995)BorzaniW.SouzaS.J.Mechanism of the film thickness increasing during the bacterial production of cellulose on nonagitated liquid mediaBiotechnol. Lett.1712711272199510.1007/BF00128400Search in Google Scholar

Brand M.T., Carter M.Q., Parker C.T., Chapman M.R., Huynh S., Zhou Y.: Salmonella biofilm formation on Aspergillus niger involves cellulose – chitin interactions. PLoS One, 6, e25553 (2011)BrandM.T.CarterM.Q.ParkerC.T.ChapmanM.R.HuynhS.ZhouY.Salmonella biofilm formation on Aspergillus niger involves cellulose – chitin interactionsPLoS One6e25553201110.1371/journal.pone.0025553Search in Google Scholar

Budhiono A., Rosidia B., Taher H., Iguchi M.: Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system, Carbohyd. Polym. 40, 137–143 (1999)BudhionoA.RosidiaB.TaherH.IguchiM.Kinetic aspects of bacterial cellulose formation in nata-de-coco culture systemCarbohyd. Polym.40137143199910.1016/S0144-8617(99)00050-8Search in Google Scholar

Cakar F., Ozer I., Aytekin A.Ö., Sahin F.: Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydr. Polym. 15, 106, 7–13 (2014)CakarF.OzerI.AytekinA.Ö.SahinF.Improvement production of bacterial cellulose by semi-continuous process in molasses mediumCarbohydr. Polym.15106713201410.1016/j.carbpol.2014.01.10324721044Search in Google Scholar

Cheng K.C., Catchmark J.M., Demirci A.: Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J. Biol. Eng. 3 (2009)ChengK.C.CatchmarkJ.M.DemirciA.Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysisJ. Biol. Eng.3200910.1186/1754-1611-3-12272440719630969Search in Google Scholar

Cheng K.C., Catchmark J.M., Demirci A.: Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules, 14, 730–736 (2011)ChengK.C.CatchmarkJ.M.DemirciA.Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysisBiomacromolecules14730736201110.1021/bm101363t21250667Search in Google Scholar

Correa M.J., Añón M.C., Pérez G.T., Ferrero C.: Effect of modified celluloses on dough rheology and microstructure. Food Res. Int. 43, 780–787 (2010)CorreaM.J.AñónM.C.PérezG.T.FerreroC.Effect of modified celluloses on dough rheology and microstructureFood Res. Int.43780787201010.1016/j.foodres.2009.11.016Search in Google Scholar

Costa A.F.S., Almeida F.C.G., Vinhas G.M., Sarubbo L.A.: Production of bacterial cellulose by Gluconacetobacter hansenii using Corn Steep Liquor as nutrient sources. Front. Microbiol. 8, 2027 (2017)CostaA.F.S.AlmeidaF.C.G.VinhasG.M.SarubboL.A.Production of bacterial cellulose by Gluconacetobacter hansenii using Corn Steep Liquor as nutrient sourcesFront. Microbiol.82027201710.3389/fmicb.2017.02027565102129089941Search in Google Scholar

Cowles K.N., Willis D.K., Engel T.N., Jones J.B., Barak JD.: Diguanylate cyclases AdrA and STM1987 regulate Salmonella enterica exopolysaccharide production during plant colonization in an environment-eependent manner. Appl. Environ. Microbiol. 15, 1237–1248 (2016)CowlesK.N.WillisD.K.EngelT.N.JonesJ.B.BarakJD.Diguanylate cyclases AdrA and STM1987 regulate Salmonella enterica exopolysaccharide production during plant colonization in an environment-eependent mannerAppl. Environ. Microbiol.1512371248201610.1128/AEM.03475-15475184226655751Search in Google Scholar

Darch R., Harrison J., Rashid M.: Sarcina ventriculi bacteria in stomach and duodenum of a patient with gastrooesophageal obstruction by Adenocarcinoma. J. Univers. Surg. 4, 46, 1–3 (2016)DarchR.HarrisonJ.RashidM.Sarcina ventriculi bacteria in stomach and duodenum of a patient with gastrooesophageal obstruction by AdenocarcinomaJ. Univers. Surg.446132016Search in Google Scholar

Das R., Panda A.B., Pal S.: Synthesis and characterization of a novel polymeric hydrogel based on hydroxypropyl methyl cellulose grafted with polyacrylamide. Cellulose, 19, 933–945 (2012)DasR.PandaA.B.PalS.Synthesis and characterization of a novel polymeric hydrogel based on hydroxypropyl methyl cellulose grafted with polyacrylamideCellulose19933945201210.1007/s10570-012-9692-6Search in Google Scholar

Devinder D., Mona M., Hradesh R., Patil R.T.: Dietary fibre in foods: a review. J. Food Sci. Technol. 49, 255–266 (2012)DevinderD.MonaM.HradeshR.PatilR.T.Dietary fibre in foods: a reviewJ. Food Sci. Technol.49255266201210.1007/s13197-011-0365-5361403923729846Search in Google Scholar

Dourado F., Gama M., Rodrigues A.C.: A review on the toxicology and dietetic role of bacterial cellulose. Toxicol. Rep. 4, 543–553 (2017)DouradoF.GamaM.RodriguesA.C.A review on the toxicology and dietetic role of bacterial celluloseToxicol. Rep.4543553201710.1016/j.toxrep.2017.09.005565538929090119Search in Google Scholar

Du J., Vepachedu V., Cho S.H., Kumar M., Nixon B.T.: Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution. PLoS One, 11, e0155886 (2016)DuJ.VepacheduV.ChoS.H.KumarM.NixonB.T.Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolutionPLoS One11e0155886201610.1371/journal.pone.0155886487710927214134Search in Google Scholar

Esa F., Tasirin S.M., Rahma N.: Overview of bacterial cellulose production and application. Agric. Agric. Sci. Procedia. 2, 113–119 (2014)EsaF.TasirinS.M.RahmaN.Overview of bacterial cellulose production and applicationAgric. Agric. Sci. Procedia.2113119201410.1016/j.aaspro.2014.11.017Search in Google Scholar

Farag S., Asker M.M.S., Mahmoud M.G., Ibrahim H., Amr A.: Comparative study for bacterial cellulose production using egyptian Achromobacter sp. Res. J. Pharm. Biol. Chem. Sci. 7, 954–970 (2016)FaragS.AskerM.M.S.MahmoudM.G.IbrahimH.AmrA.Comparative study for bacterial cellulose production using egyptian Achromobacter spRes. J. Pharm. Biol. Chem. Sci.79549702016Search in Google Scholar

Gayathry G., Gopalaswamy G.: Production and characterization of microbial cellulosic fibre from Acetobacter xylinum. Indian J. Fibre Text. Res. 39, 93–96 (2014)GayathryG.GopalaswamyG.Production and characterization of microbial cellulosic fibre from Acetobacter xylinumIndian J. Fibre Text. Res.3993962014Search in Google Scholar

George J., Ramana K.V., Sabapathy S.N., Bawa A.S.: Physico-mechanical properties of chemically treated bacterial (Acetobacter xylinum) cellulose membrane. World J. Microbiol. Biotechnol. 21, 1323–1327 (2005)GeorgeJ.RamanaK.V.SabapathyS.N.BawaA.S.Physico-mechanical properties of chemically treated bacterial (Acetobacter xylinum) cellulose membraneWorld J. Microbiol. Biotechnol.2113231327200510.1007/s11274-005-3574-0Search in Google Scholar

Heindl J.E., Yi W., Heckel B.C., Mohari B., Feirer N., Fuqua C.: Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium. Front. Plant Sci. 5, 176–180 (2014)HeindlJ.E.YiW.HeckelB.C.MohariB.FeirerN.FuquaC.Mechanisms and regulation of surface interactions and biofilm formation in AgrobacteriumFront. Plant Sci.5176180201410.3389/fpls.2014.00176401855424834068Search in Google Scholar

Hornung M.L., Gerrard A.M., Schmauder H.P.: Optimizing the production of bacterial cellulose in surface culture: Evaluation of substrate mass transfer influences on the bioreaction (Part 1), Eng. Life Sci. 6, 537–545 (2006)HornungM.L.GerrardA.M.SchmauderH.P.Optimizing the production of bacterial cellulose in surface culture: Evaluation of substrate mass transfer influences on the bioreaction (Part 1)Eng. Life Sci.6537545200610.1002/elsc.200620162Search in Google Scholar

Hornung M.L, Schmauder H.P.: Optimizing the production of bacterial cellulose in surface culture: A novel aerosol bioreactor working on a fed batch principle (Part 3). Eng. Life Sci. 7, 35–41 (2007)HornungM.LSchmauderH.P.Optimizing the production of bacterial cellulose in surface culture: A novel aerosol bioreactor working on a fed batch principle (Part 3)Eng. Life Sci.73541200710.1002/elsc.200620164Search in Google Scholar

Hsieh J.T., Wang M.J., Lai J.T, Liu H.S.: A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. J. Taiwan Inst. Chem. E. 63, 46–51 (2016)HsiehJ.T.WangM.J.LaiJ.TLiuH.S.A novel static cultivation of bacterial cellulose production by intermittent feeding strategyJ. Taiwan Inst. Chem. E.634651201610.1016/j.jtice.2016.03.020Search in Google Scholar

Huang C., Guo H.J., Xiong L., Wang B., Shi S.L., Chen X.F., Lin X.Q., Wang C., Luo J., Chen X.D.: Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr. Polym. 20, 136, 198–202 (2016)HuangC.GuoH.J.XiongL.WangB.ShiS.L.ChenX.F.LinX.Q.WangC.LuoJ.ChenX.D.Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinusCarbohydr. Polym.20136198202201610.1016/j.carbpol.2015.09.04326572346Search in Google Scholar

Huang C., Yang X.Y., Xiong L., Guo H.J., Luo J., Wang B., Zhang H.R., Lin X.Q., Chen X.D.: Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus. Lett. Appl. Microbiol. 60, 491–496 (2015)HuangC.YangX.Y.XiongL.GuoH.J.LuoJ.WangB.ZhangH.R.LinX.Q.ChenX.D.Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinusLett. Appl. Microbiol.60491496201510.1111/lam.1239625615895Search in Google Scholar

Huang Y., Zhu C., Yang J., Nie Y., Chen C., et al.: Recent advances in bacterial cellulose. Cellulose, 21, 1–30 (2014)HuangY.ZhuC.YangJ.NieY.ChenC.Recent advances in bacterial celluloseCellulose21130201410.1007/s10570-013-0088-zSearch in Google Scholar

Hungund B.S., Gupta S.G.: Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple. World. J. Microb. Biot. 26, 1823–1828 (2010)HungundB.S.GuptaS.G.Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten appleWorld. J. Microb. Biot.2618231828201010.1007/s11274-010-0363-1Search in Google Scholar

Hyun J.Y., Mahanty B., Kim C.G.: Utilization of makgeolli sludge filtrate (MSF) as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus. Appl. Biochem. Biotechnol. 172, 3748–3760 (2014)HyunJ.Y.MahantyB.KimC.G.Utilization of makgeolli sludge filtrate (MSF) as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinusAppl. Biochem. Biotechnol.17237483760201410.1007/s12010-014-0810-924569910Search in Google Scholar

Islam M.U., Ullah M.W., Khan S., Shah N., Park J.K.: Strategies for cost-effective and enhanced production of bacterial cellulose. Int. J. Biol. Macromol. 102, 1166–1173 (2017)IslamM.U.UllahM.W.KhanS.ShahN.ParkJ.K.Strategies for cost-effective and enhanced production of bacterial celluloseInt. J. Biol. Macromol.10211661173201710.1016/j.ijbiomac.2017.04.11028487196Search in Google Scholar

Jahn C.E., Selimi D.A., Barak J.D., Charkowski A.O.: The Dickeya dadantii biofilm matrix consists of cellulose nanofibres, and is an emergent property dependent upon the type III secretion system and the cellulose synthesis operon. Microbiology, 157, 2733–2744 (2011)JahnC.E.SelimiD.A.BarakJ.D.CharkowskiA.O.The Dickeya dadantii biofilm matrix consists of cellulose nanofibres, and is an emergent property dependent upon the type III secretion system and the cellulose synthesis operonMicrobiology15727332744201110.1099/mic.0.051003-0Search in Google Scholar

Jessa J., Hozyasz K.K.: Wartość zdrowotna produktów kokosowych (Health value of coconut products). Pediatr. Pol. 90, 415–423, (2015)JessaJ.HozyaszK.K.Wartość zdrowotna produktów kokosowych (Health value of coconut products)Pediatr. Pol.90415423201510.1016/j.pepo.2015.03.001Search in Google Scholar

Ji K., Wang W., Zeng B., Chen S., Zhao Q., Chen Y., Li G., Ma T.: Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07. Sci. Rep. 6, 21863 (2016)JiK.WangW.ZengB.ChenS.ZhaoQ.ChenY.LiG.MaT.Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07Sci. Rep.621863201610.1038/srep21863Search in Google Scholar

Juda S.N., Nugraha S., Nugraha D. A.: Development of nata de coco with natural dyes using value engineering method. The 3rd International Conference on Agro-Industry 2016 “Competitive & Sustainable Agro-Industry”, 96–109 (2016)JudaS.N.NugrahaS.NugrahaD. A.Development of nata de coco with natural dyes using value engineering methodThe 3rd International Conference on Agro-Industry 2016 “Competitive & Sustainable Agro-Industry”961092016Search in Google Scholar

Jung H., Ha O., Shehzad S., Khan S., Yong L.J., Won P.T., Khan J., Kon P.: Production of bacterial cellulose by a static cultivation using the waste from beer culture broth. Korean J. Chem. Eng. 25, 812 (2008)JungH.HaO.ShehzadS.KhanS.YongL.J.WonP.T.KhanJ.KonP.Production of bacterial cellulose by a static cultivation using the waste from beer culture brothKorean J. Chem. Eng.25812200810.1007/s11814-008-0134-ySearch in Google Scholar

Jung H.I., Jeong J.H., Lee O.M., Park G.T., Kim K.K., Park H.C., Lee S.M., Kim Y.G., Son H.J.: Influence of glycerol on production and structural-physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Bioresour. Technol. 101, 3602–3608 (2010)JungH.I.JeongJ.H.LeeO.M.ParkG.T.KimK.K.ParkH.C.LeeS.M.KimY.G.SonH.J.Influence of glycerol on production and structural-physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasksBioresour. Technol.10136023608201010.1016/j.biortech.2009.12.111Search in Google Scholar

Jung H.I., Lee O.M., Jeong J.H., Jeon Y.D., Park K.H., Kim H.S., An W.G., Son H.J.: Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses-corn steep liquor medium. Appl. Biochem. Biotechnol. 162, 486–497 (2010)JungH.I.LeeO.M.JeongJ.H.JeonY.D.ParkK.H.KimH.S.AnW.G.SonH.J.Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses-corn steep liquor mediumAppl. Biochem. Biotechnol.162486497201010.1007/s12010-009-8759-9Search in Google Scholar

Keshk S.M.: Physical properties of bacterial cellulose sheets produced in presence of lignosulfonate. Enzyme Microb. Tech. 40, 9–12 (2006)KeshkS.M.Physical properties of bacterial cellulose sheets produced in presence of lignosulfonateEnzyme Microb. Tech.40912200610.1016/j.enzmictec.2006.07.038Search in Google Scholar

Keshk S.M., Razek T.M., Sameshima K.: Bacterial cellulose production from beet molasses. Afr. J. Biotechnol. 5, 1519–1523 (2006)KeshkS.M.RazekT.M.SameshimaK.Bacterial cellulose production from beet molassesAfr. J. Biotechnol.5151915232006Search in Google Scholar

Kim S.Y., Kim J.N., Wee Y.J., Park D.H., Ryu H.W.: Production of bacterial cellulose by Gluconacetobacter sp. RKY5 isolated from persimmon vinegar. Appl. Biochem. Biotechnol. 129, 705–715 (2006)KimS.Y.KimJ.N.WeeY.J.ParkD.H.RyuH.W.Production of bacterial cellulose by Gluconacetobacter sp. RKY5 isolated from persimmon vinegarAppl. Biochem. Biotechnol.129705715200610.1007/978-1-59745-268-7_57Search in Google Scholar

Kimbrough T.G., Miller S.I.: Assembly of the type III secretion needle complex of Salmonella typhimurium. Microbes. Infect. 4, 75–82 (2002)KimbroughT.G.MillerS.I.Assembly of the type III secretion needle complex of Salmonella typhimuriumMicrobes. Infect.47582200210.1016/S1286-4579(01)01512-XSearch in Google Scholar

Kiziltas E.E., Kiziltas A., Gardnera D.J.: Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydr. Polym. 124, 131–138 (2015)KiziltasE.E.KiziltasA.GardneraD.J.Synthesis of bacterial cellulose using hot water extracted wood sugarsCarbohydr. Polym.124131138201510.1016/j.carbpol.2015.01.03625839803Search in Google Scholar

Kubiak K., Kalinowska H., Peplińska M., Bielecki S.: Celuloza bakteryjna jako bionanomateriał. Post. Biol. Komórki, 36, 85–98 (2009)KubiakK.KalinowskaH.PeplińskaM.BieleckiS.Celuloza bakteryjna jako bionanomateriałPost. Biol. Komórki3685982009Search in Google Scholar

Lima E.B., Sousa C.N., Meneses L.N., Ximenes N.C., Santos M.A., Vasconcelos G.S., Lima N.B., Patrocínio M.C., Macedo D., Vasconcelos S.M.: Cocos nucifera (L.) (Arecaceae): A phytochemical and pharmacological review. Braz. J. Med. Biol. Res. 48, 953–964 (2015)LimaE.B.SousaC.N.MenesesL.N.XimenesN.C.SantosM.A.VasconcelosG.S.LimaN.B.PatrocínioM.C.MacedoD.VasconcelosS.M.Cocos nucifera (L.) (Arecaceae): A phytochemical and pharmacological reviewBraz. J. Med. Biol. Res.48953964201510.1590/1414-431x20154773467152126292222Search in Google Scholar

Lin D., Lopez-Sanchez P., Li R., Li Z.: Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour. Technol. 151, 113–119 (2014)LinD.Lopez-SanchezP.LiR.LiZ.Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient sourceBioresour. Technol.151113119201410.1016/j.biortech.2013.10.05224212131Search in Google Scholar

Lin S.P. i wsp.: Biosynthesis, production and applications of bacterial cellulose. Cellulose, 20, 2191–2218 (2013)LinS.P.i wsp.Biosynthesis, production and applications of bacterial celluloseCellulose2021912218201310.1007/s10570-013-9994-3Search in Google Scholar

Lin S.B., Chen L.C., Chen H.H.: Physical characteristics of surimi and bacterial cellulose composite gel. J. Food Process Eng. 34, 1363–1379 (2011)LinS.B.ChenL.C.ChenH.H.Physical characteristics of surimi and bacterial cellulose composite gelJ. Food Process Eng.3413631379201110.1111/j.1745-4530.2009.00533.xSearch in Google Scholar

Luo M.T., Huang C., Chen X.F., Huang Q.L., Qi G.X., Tian L.L., Xiong L., Li H.L., Chen X.D.: Efficient bioconversion from acid hydrolysate of waste oleaginous yeast biomass after microbial oil extraction to bacterial cellulose by Komagataeibacter xylinus. Prep. Biochem. Biotechnol. 47, 1025–1031 (2017)LuoM.T.HuangC.ChenX.F.HuangQ.L.QiG.X.TianL.L.XiongL.LiH.L.ChenX.D.Efficient bioconversion from acid hydrolysate of waste oleaginous yeast biomass after microbial oil extraction to bacterial cellulose by Komagataeibacter xylinusPrep. Biochem. Biotechnol.4710251031201710.1080/10826068.2017.137329028857665Search in Google Scholar

Luo M.T., Zhao C., Huang C., Chen X.F., Huang Q.L., Qi G.X., Tian L.L., Xiong L., Li H.L., Chen X.D.: Efficient using Durian shell hydrolysate as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus. Indian J. Microbiol. 57, 393–399 (2017)LuoM.T.ZhaoC.HuangC.ChenX.F.HuangQ.L.QiG.X.TianL.L.XiongL.LiH.L.ChenX.D.Efficient using Durian shell hydrolysate as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinusIndian J. Microbiol.57393399201710.1007/s12088-017-0681-1567143629151639Search in Google Scholar

Ma T., Ji K., Wang W., Wang J., Li Z., Ran H., Liu B., Li G.: Cellulose synthesized by Enterobacter sp. FY-07 under aerobic and anaerobic conditions. Bioresour. Technol. 126, 18–23 (2012)MaT.JiK.WangW.WangJ.LiZ.RanH.LiuB.LiG.Cellulose synthesized by Enterobacter sp. FY-07 under aerobic and anaerobic conditionsBioresour. Technol.1261823201210.1016/j.biortech.2012.09.04023073085Search in Google Scholar

Martins D., Fontão A., Dourado F., Gama M.: Bacterial cellulose as a stabilizer for oil-in-water emulsions. Chempor. BB16, 234–235 (2018)MartinsD.FontãoA.DouradoF.GamaM.Bacterial cellulose as a stabilizer for oil-in-water emulsionsChempor.BB162342352018Search in Google Scholar

Matthysse A.G.: Exopolysaccharides of Agrobacterium tumefaciens. Curr. Top. Microbiol. Immunol. 418, 111–141 (2018)MatthysseA.G.Exopolysaccharides of Agrobacterium tumefaciensCurr. Top. Microbiol. Immunol.418111141201810.1007/82_2018_10029992358Search in Google Scholar

Mc Manus J.B., Yang H., Wilson L., Kubicki J.D., Tien M.: Initiation, elongation and termination of bacterial cellulose synthesis. ACS Omega, 31, 3, 2690–2698 (2018)Mc ManusJ.B.YangH.WilsonL.KubickiJ.D.TienM.Initiation, elongation and termination of bacterial cellulose synthesisACS Omega31326902698201810.1021/acsomega.7b01808604495130023847Search in Google Scholar

Mc Namara J.T., Morgan J.L.W., Zimmer J.: A molecular description of cellulose biosynthesis. Annu. Rev. Biochem. 84, 895–921 (2015)Mc NamaraJ.T.MorganJ.L.W.ZimmerJ.A molecular description of cellulose biosynthesisAnnu. Rev. Biochem.84895921201510.1146/annurev-biochem-060614-033930471035426034894Search in Google Scholar

Mesomya W., Pakpeankitvatana V., Komindr S., Songklanakarin J.: Effects of health food from cereal and nata de coco on serum lipids in human. Sci. Technol. 28, 23–28 (2006)MesomyaW.PakpeankitvatanaV.KomindrS.SongklanakarinJ.Effects of health food from cereal and nata de coco on serum lipids in humanSci. Technol.2823282006Search in Google Scholar

Molina-Ramírez C., Castro M., Osorio M., Torres-Taborda M., Gómez B., Zuluaga R., Gómez C., Gañán P., Rojas O.J., Castro C.: Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials (Basel), 11, e639 (2017)Molina-RamírezC.CastroM.OsorioM.Torres-TabordaM.GómezB.ZuluagaR.GómezC.GañánP.RojasO.J.CastroC.Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensisMaterials (Basel)11e639201710.3390/ma10060639555402028773001Search in Google Scholar

Molina-Ramírez C., Enciso C., Torres-Taborda M., Zuluaga R., Gañán P., Rojas O.J., Castro C.: Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensis. Int. J. Biol. Macromol. 1, 117, 735–741 (2018)Molina-RamírezC.EncisoC.Torres-TabordaM.ZuluagaR.GañánP.RojasO.J.CastroC.Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensisInt. J. Biol. Macromol.1117735741201810.1016/j.ijbiomac.2018.05.19529847783Search in Google Scholar

Moniri M., Moghaddam A.B., Azizi S., Rahim R.A., Ariff A.B., Saad W.Z., Navaderi M., Mohamad R.: Production and status of bacterial cellulose in biomedical engineering. Nanomaterials (Basel), 7, 257–265 (2017)MoniriM.MoghaddamA.B.AziziS.RahimR.A.AriffA.B.SaadW.Z.NavaderiM.MohamadR.Production and status of bacterial cellulose in biomedical engineeringNanomaterials (Basel)7257265201710.3390/nano7090257561836832962322Search in Google Scholar

Monteiro C., Saxena I., Wang X., Kader A., Bokranz W., Simm R., Nobles D., Chromek M., Brauner A., Brown R.M., Römling U.: Characterization of cellulose production in Escherichia coli Nissle 1917 and its biological consequences. Environ. Microbiol. 11, 1105–1116 (2009)MonteiroC.SaxenaI.WangX.KaderA.BokranzW.SimmR.NoblesD.ChromekM.BraunerA.BrownR.M.RömlingU.Characterization of cellulose production in Escherichia coli Nissle 1917 and its biological consequencesEnviron. Microbiol.1111051116200910.1111/j.1462-2920.2008.01840.x19175667Search in Google Scholar

Morgan J.L.W., Mc Namara J.T., Zimmer J.: Mechanism of activation of bacterial cellulose synthase by cyclic-di-GMP. Nat. Struct. Mol. Biol. 21, 489–496 (2014)MorganJ.L.W.Mc NamaraJ.T.ZimmerJ.Mechanism of activation of bacterial cellulose synthase by cyclic-di-GMPNat. Struct. Mol. Biol.21489496201410.1038/nsmb.2803401321524704788Search in Google Scholar

Morgan J.L., Strumillo J., Zimmer J.: Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature, 493, 181–186 (2013)MorganJ.L.StrumilloJ.ZimmerJ.Crystallographic snapshot of cellulose synthesis and membrane translocationNature493181186201310.1038/nature11744354241523222542Search in Google Scholar

Omadjela O., Narahari A., Strumillo J., Mélida H., Mazur O., Bulone V., Zimmer J.: BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proc. Natl. Acad. Sci. USA, 29, 110, 17856–17861 (2013)OmadjelaO.NarahariA.StrumilloJ.MélidaH.MazurO.BuloneV.ZimmerJ.BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesisProc. Natl. Acad. Sci. USA291101785617861201310.1073/pnas.1314063110381647924127606Search in Google Scholar

Pereira R.H.V., Carvalho-Assef A.P., Albano R.M., Folescu T.W., Jones M.C., Leão R.S., Marques E.A.: Achromobacter xylosoxidans: characterization of strains in brazilian cystic fibrosis patients. J. Clin. Microbiol. 49, 3649–3651 (2011)PereiraR.H.V.Carvalho-AssefA.P.AlbanoR.M.FolescuT.W.JonesM.C.LeãoR.S.MarquesE.A.Achromobacter xylosoxidans: characterization of strains in brazilian cystic fibrosis patientsJ. Clin. Microbiol.4936493651201110.1128/JCM.05283-11318733521849686Search in Google Scholar

Pontes M.H., Lee E.J., Choi J., Groisman E.A.: Salmonella promotes virulence by repressing cellulose production. Proc. Natl. Acad. Sci. USA, 21, 112, 5183–5188 (2015)PontesM.H.LeeE.J.ChoiJ.GroismanE.A.Salmonella promotes virulence by repressing cellulose productionProc. Natl. Acad. Sci. USA2111251835188201510.1073/pnas.1500989112441331125848006Search in Google Scholar

Premjet S., Premjet D., Ohtani Y.: The Effect of ingredients of sugar cane molasses on bacterial cellulose production by Acetobacter xylinum ATCC 10245. Fibers, 63, 193–199 (2007)PremjetS.PremjetD.OhtaniY.The Effect of ingredients of sugar cane molasses on bacterial cellulose production by Acetobacter xylinum ATCC 10245Fibers63193199200710.2115/fiber.63.193Search in Google Scholar

Rani M.U., Appaiah K.A.: Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk. J. Food Sci. Technol. 50, 755–762 (2013)RaniM.U.AppaiahK.A.Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry huskJ. Food Sci. Technol.50755762201310.1007/s13197-011-0401-5Search in Google Scholar

Rasheed M.R., Kim G.J., Senseng C.: A rare case of Sarcina ventriculi of the stomach in an asymptomatic patient. Int. J. Surg. Pathol. 24, 142–145 (2016)RasheedM.R.KimG.J.SensengC.A rare case of Sarcina ventriculi of the stomach in an asymptomatic patientInt. J. Surg. Pathol.24142145201610.1177/1066896915610196Search in Google Scholar

Revin V., Liyaskina E., Nazarkina M., Bogatyreva A., Shchankin M.: Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz. J. Microbiol. 49, 151–159 (2018)RevinV.LiyaskinaE.NazarkinaM.BogatyrevaA.ShchankinM.Cost-effective production of bacterial cellulose using acidic food industry by-productsBraz. J. Microbiol.49151159201810.1016/j.bjm.2017.12.012Search in Google Scholar

Richard V., Augimeri A., Varley J., Strap J.L.: Establishing a role for bacterial cellulose in environmental interactions: Lessons learned from diverse biofilm-producing Proteobacteria. Front. Microbiol. 6, 1282 (2015)RichardV.AugimeriA.VarleyJ.StrapJ.L.Establishing a role for bacterial cellulose in environmental interactions: Lessons learned from diverse biofilm-producing ProteobacteriaFront. Microbiol.61282201510.3389/fmicb.2015.01282Search in Google Scholar

Robledo M., Rivera L., Jiménez-Zurdo J.I., Rivas R., Dazzo F., Velázquez E., Martínez-Molina E., Hirsch A.M., Mateos P.F.: Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb. Cell Fact. 12, 125 (2012)RobledoM.RiveraL.Jiménez-ZurdoJ.I.RivasR.DazzoF.VelázquezE.Martínez-MolinaE.HirschA.M.MateosP.F.Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfacesMicrob. Cell Fact.12125201210.1186/1475-2859-11-125Search in Google Scholar

Rodríguez-López L., Vecino X., Barbosa-Pereira L., Moldes A.B., Cruz J.M.: A multifunctional extract from corn steep liquor: antioxidant and surfactant activities. Food Funct. 7, 3724–3732 (2016)Rodríguez-LópezL.VecinoX.Barbosa-PereiraL.MoldesA.B.CruzJ.M.A multifunctional extract from corn steep liquor: antioxidant and surfactant activitiesFood Funct.737243732201610.1039/C6FO00979DSearch in Google Scholar

Ross P., Mayer R., Benziman M.: Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55, 35–58 (1991)RossP.MayerR.BenzimanM.Cellulose biosynthesis and function in bacteriaMicrobiol. Rev.553558199110.1128/mr.55.1.35-58.1991Search in Google Scholar

Römling U.: Molecular biology of cellulose production in bacteria. Res. Microbiol. 153, 205–212 (2002)RömlingU.Molecular biology of cellulose production in bacteriaRes. Microbiol.153205212200210.1016/S0923-2508(02)01316-5Search in Google Scholar

Römling U., Galperin M.Y., Gomelsky M.: Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 77, 1–52 (2013)RömlingU.GalperinM.Y.GomelskyM.Cyclic di-GMP: the first 25 years of a universal bacterial second messengerMicrobiol. Mol. Biol. Rev.77152201310.1128/MMBR.00043-12359198623471616Search in Google Scholar

Römling U., Galperin M.Y.: Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions. Trends Microbiol. 23, 545–557 (2015)RömlingU.GalperinM.Y.Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functionsTrends Microbiol.23545557201510.1016/j.tim.2015.05.005467671226077867Search in Google Scholar

Sabularse V.C., Montalbo M.N., Hernandez H.P., Serrano EP.: Preparation of nata de coco-based carboxymethylcellulose coating and its effect on the post-harvest life of bell pepper (Capsicum annuum L.) fruits. Int. J. Food Sci. Nutr. 60, 206–218 (2009)SabularseV.C.MontalboM.N.HernandezH.P.SerranoEP.Preparation of nata de coco-based carboxymethylcellulose coating and its effect on the post-harvest life of bell pepper (Capsicum annuum L.) fruitsInt. J. Food Sci. Nutr.60206218200910.1080/0963748090285879019391029Search in Google Scholar

Salari M., Sowti K.M., Rezaei M.R, Ghanbarzadeh B., Samadi K.H.: Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media. Int. J. Biol. Macromol. 1, 280–288 (2019)SalariM.SowtiK.M.RezaeiM.RGhanbarzadehB.SamadiK.H.Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey mediaInt. J. Biol. Macromol.1280288201910.1016/j.ijbiomac.2018.10.13630342939Search in Google Scholar

Santos D.K., Rufino R.D., Luna J.M., Santos V.A., Sarubbo L.A.: Review biosurfactants: multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 17, 401–408 (2016)SantosD.K.RufinoR.D.LunaJ.M.SantosV.A.SarubboL.A.Review biosurfactants: multifunctional biomolecules of the 21st centuryInt. J. Mol. Sci.17401408201610.3390/ijms17030401481325626999123Search in Google Scholar

Shezad O., Khan S., Khan T., Park J.K.: Production of bacterial cellulose in static conditions by a simple fed-batch cultivation strategy. Korean J. Chem. Eng. 26, 1689–1692 (2009)ShezadO.KhanS.KhanT.ParkJ.K.Production of bacterial cellulose in static conditions by a simple fed-batch cultivation strategyKorean J. Chem. Eng.2616891692200910.1007/s11814-009-0232-5Search in Google Scholar

Shi Z., Zhang Y., Phillips G.O., Yang G.: Utilization of bacterial cellulose in food. Food Hydrocoll. 35, 539–545 (2014)ShiZ.ZhangY.PhillipsG.O.YangG.Utilization of bacterial cellulose in foodFood Hydrocoll.35539545201410.1016/j.foodhyd.2013.07.012Search in Google Scholar

Sonia A., Dasan K.P.: Celluloses microfibers (CMF)/Poly (Ethylene-Co-Vinyl Acetate) (EVA) composites for food packaging applications: a study based on barrier and biodegradation behavior. J. Food Eng. 118, 78–89 (2013)SoniaA.DasanK.P.Celluloses microfibers (CMF)/Poly (Ethylene-Co-Vinyl Acetate) (EVA) composites for food packaging applications: a study based on barrier and biodegradation behaviorJ. Food Eng.1187889201310.1016/j.jfoodeng.2013.03.020Search in Google Scholar

Spiers A.J., Bohannon J., Gehrig S.M., Rainey P.B.: Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol. Microbiol. 50, 15–27 (2003)SpiersA.J.BohannonJ.GehrigS.M.RaineyP.B.Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of celluloseMol. Microbiol.501527200310.1046/j.1365-2958.2003.03670.x14507360Search in Google Scholar

Starzyk J., Niewiadomska A., Wolna-Maruwka A., Swędrzyńska D.: Zmiany liczebności Azospirillum i Azotobacter w glebie pod uprawą kukurydzy (Zea Mays L.) z zastosowaniem różnych nawozów organicznych. Fragm. Agron. 30, 147–155 (2013)StarzykJ.NiewiadomskaA.Wolna-MaruwkaA.SwędrzyńskaD.Zmiany liczebności Azospirillum i Azotobacter w glebie pod uprawą kukurydzy (Zea Mays L.) z zastosowaniem różnych nawozów organicznychFragm. Agron.301471552013Search in Google Scholar

Suppakul P., Jutakor K., Bangchokedee Y.: Efficacy of cellulose-based coating on enhancing the shelf life of fresh eggs. J. Food Eng. 98, 207–213 (2010)SuppakulP.JutakorK.BangchokedeeY.Efficacy of cellulose-based coating on enhancing the shelf life of fresh eggsJ. Food Eng.98207213201010.1016/j.jfoodeng.2009.12.027Search in Google Scholar

Tabaii M.J., Emtiazi G.: Comparison of bacterial cellulose production among different strains and fermented media. App. Food Biotechnol. 3, 35–41 (2016)TabaiiM.J.EmtiaziG.Comparison of bacterial cellulose production among different strains and fermented mediaApp. Food Biotechnol.335412016Search in Google Scholar

Tahara N., Tabuchi M., Watanabe K., Yano H., Morinaga Y., Yoshinaga F.: Degree of polymerization of cellulose from Acetobacter xylinum BPR2001 decreased by cellulase produced by the strain. Biosci. Biotechnol. Biochem. 61, 1862–1865 (1997)TaharaN.TabuchiM.WatanabeK.YanoH.MorinagaY.YoshinagaF.Degree of polymerization of cellulose from Acetobacter xylinum BPR2001 decreased by cellulase produced by the strainBiosci. Biotechnol. Biochem.6118621865199710.1271/bbb.61.186227396738Search in Google Scholar

Tanskul S., Amornthatree K., Jaturonlak N.: A new cellulose-producing bacterium, Rhodococcus sp. MI 2: screening and optimization of culture conditions. Carbohydr. Polym. 30, 92, 421–428 (2013)TanskulS.AmornthatreeK.JaturonlakN.A new cellulose-producing bacterium, Rhodococcus sp. MI 2: screening and optimization of culture conditionsCarbohydr. Polym.3092421428201310.1016/j.carbpol.2012.09.01723218315Search in Google Scholar

Tsouko E., Kourmentza C., Ladakis D., Kopsahelis N., Mandala I., Papanikolaou S., Paloukis F., Alves V., Koutinas A.: Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 16, 14832–14849 (2015)TsoukoE.KourmentzaC.LadakisD.KopsahelisN.MandalaI.PapanikolaouS.PaloukisF.AlvesV.KoutinasA.Bacterial cellulose production from industrial waste and by-product streamsInt. J. Mol. Sci.161483214849201510.3390/ijms160714832451987426140376Search in Google Scholar

Ul-Islam M., Khan T., Park J.K.: Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr. Polym. 88, 596–603 (2012)Ul-IslamM.KhanT.ParkJ.K.Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modificationCarbohydr. Polym.88596603201210.1016/j.carbpol.2012.01.006Search in Google Scholar

Vazquez A., Foresti M. L., Cerrutti P., Galvagno M.: Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J. Polym. Environ. 21, 545–554 (2013)VazquezA.ForestiM. L.CerruttiP.GalvagnoM.Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinusJ. Polym. Environ.21545554201310.1007/s10924-012-0541-3Search in Google Scholar

Williams A., Wilkinson A., Krehenbrink M., Russo D.M., Zorreguieta A., Downie J.A.: Glucomannan-mediated attachment of Rhizobium leguminosarum to pea root hairs is required for competitive nodule infection. J. Bacteriol. 190, 4706–4715 (2008)WilliamsA.WilkinsonA.KrehenbrinkM.RussoD.M.ZorreguietaA.DownieJ.A.Glucomannan-mediated attachment of Rhizobium leguminosarum to pea root hairs is required for competitive nodule infectionJ. Bacteriol.19047064715200810.1128/JB.01694-07244680418441060Search in Google Scholar

Whitney J.C., Howell P.L.: Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends Microbiol. 21, 63–72 (2013)WhitneyJ.C.HowellP.L.Synthase-dependent exopolysaccharide secretion in Gram-negative bacteriaTrends Microbiol.216372201310.1016/j.tim.2012.10.001411349423117123Search in Google Scholar

Wu D., Li X., Shen C., Lu J., Chen J., Xie G.: Decreased ethyl carbamate generation during Chinese rice wine fermentation by disruption of CAR1 in an industrial yeast strain. Int. J. Food Microbiol. 180, 19–23 (2014)WuD.LiX.ShenC.LuJ.ChenJ.XieG.Decreased ethyl carbamate generation during Chinese rice wine fermentation by disruption of CAR1 in an industrial yeast strainInt. J. Food Microbiol.1801923201410.1016/j.ijfoodmicro.2014.04.00724769164Search in Google Scholar

Wu J.M., Liu R.H.: Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr. Polym. 90, 116–121 (2012)WuJ.M.LiuR.H.Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinusCarbohydr. Polym.90116121201210.1016/j.carbpol.2012.05.00324751018Search in Google Scholar

Wu J.M., Liu R.H.: Cost-effective production of bacterial cellulose in static cultures using distillery wastewater. J. Biosci. Bioeng. 115, 284–290 (2013)WuJ.M.LiuR.H.Cost-effective production of bacterial cellulose in static cultures using distillery wastewaterJ. Biosci. Bioeng.115284290201310.1016/j.jbiosc.2012.09.01423102658Search in Google Scholar

Wu S.C., Li M.H.: Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus. J. Biosci. Bioeng. 120, 444–449 (2015)WuS.C.LiM.H.Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinusJ. Biosci. Bioeng.120444449201510.1016/j.jbiosc.2015.02.01825823854Search in Google Scholar

Yang X.Y., Huang C., Guo H.J., Xiong L., Li Y.Y., Zhang H.R., Chen X.D.: Bioconversion of elephant grass (Pennisetum purpureum) acid hydrolysate to bacterial cellulose by Gluconacetobacter xylinus. J. Appl. Microbiol. 115, 995–1002 (2013)YangX.Y.HuangC.GuoH.J.XiongL.LiY.Y.ZhangH.R.ChenX.D.Bioconversion of elephant grass (Pennisetum purpureum) acid hydrolysate to bacterial cellulose by Gluconacetobacter xylinusJ. Appl. Microbiol.1159951002201310.1111/jam.1225523890373Search in Google Scholar

Zhang S., Kingsley R.A., Santos R.L., Andrews-Polymenis H., Raffatellu M., Figueiredo J., Nunes J., Tsolis R.M., Adams G.L., Bäumler A.J.: Molecular pathogenesis of Salmonella enterica serotype Typhimurium-induced diarrhea. Infect. Immun. 71, 1–12 (2003)ZhangS.KingsleyR.A.SantosR.L.Andrews-PolymenisH.RaffatelluM.FigueiredoJ.NunesJ.TsolisR.M.AdamsG.L.BäumlerA.J.Molecular pathogenesis of Salmonella enterica serotype Typhimurium-induced diarrheaInfect. Immun.71112200310.1128/IAI.71.1.1-12.200314329212496143Search in Google Scholar

Zhang S., Winestrand S., Guo X., Chen L., Hong F., Jönsson L.J.: Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus. Microb. Cell Fact. 13, (2014)ZhangS.WinestrandS.GuoX.ChenL.HongF.JönssonL.J.Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinusMicrob. Cell Fact.13201410.1186/1475-2859-13-62412618424884902Search in Google Scholar

Zhao Q., Zhao M., Li J., Yang B., Su G., Cui C., Jiang Y.: Effect of hydroxypropyl methylcellulose on the textural and whipping properties of whipped cream. Food Hydrocoll. 23, 2168–2173 (2009)ZhaoQ.ZhaoM.LiJ.YangB.SuG.CuiC.JiangY.Effect of hydroxypropyl methylcellulose on the textural and whipping properties of whipped creamFood Hydrocoll.2321682173200910.1016/j.foodhyd.2009.04.007Search in Google Scholar

Zhou L.L., Sun D.P., Hu L.Y., Li Y.W., Yang J.Z.: Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J. Ind. Microbiol. Biotechnol. 34, 483–489 (2007)ZhouL.L.SunD.P.HuL.Y.LiY.W.YangJ.Z.Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum.J. Ind. Microbiol. Biotechnol.34483489200710.1007/s10295-007-0218-417440758Search in Google Scholar

Żbikowska A., Kupiec M., Onacik-Gür S.: Wpływ karagenu na teksturę i stabilność oleożeli hydroksypropylometylocelulozowych. Acta Agroph. 24, 553–561 (2017)ŻbikowskaA.KupiecM.Onacik-GürS.Wpływ karagenu na teksturę i stabilność oleożeli hydroksypropylometylocelulozowychActa Agroph.245535612017Search in Google Scholar

Żywicka A., Junka A.F., Szymczyk P., Chodaczek G., Grzesiak J., Sedghizadeh P.P., Fijałkowski K.: Bacterial cellulose yield increased over 500% by supplementation of medium with vegetable oil. Carbohydr. Polym. 199, 294–303 (2018)ŻywickaA.JunkaA.F.SzymczykP.ChodaczekG.GrzesiakJ.SedghizadehP.P.FijałkowskiK.Bacterial cellulose yield increased over 500% by supplementation of medium with vegetable oilCarbohydr. Polym.199294303201810.1016/j.carbpol.2018.06.12630143132Search in Google Scholar

eISSN:
2545-3149
Lingue:
Inglese, Polacco
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Microbiology and Virology