1. bookVolume 58 (2019): Edizione 1 (January 2019)
Dettagli della rivista
License
Formato
Rivista
eISSN
2545-3149
Prima pubblicazione
01 Mar 1961
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese, Polacco
Accesso libero

New Species Of Bacteria In Human Infections

Pubblicato online: 10 Jun 2019
Volume & Edizione: Volume 58 (2019) - Edizione 1 (January 2019)
Pagine: 29 - 34
Ricevuto: 01 Oct 2018
Accettato: 01 Dec 2018
Dettagli della rivista
License
Formato
Rivista
eISSN
2545-3149
Prima pubblicazione
01 Mar 1961
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese, Polacco
Introduction

More frequent and wider application of quick methods for identifying microorganisms based on new technologies in microbiological diagnostics has led to the appearance of descriptions of bacterial infection cases in literature which have been so far disregarded due to the impossibility of their description or have been considered to be scarcely virulent or non-pathogenic. New methods include, among others, mass spectrometry or infrared spectrometry. These methods are highly sensitive and specific, as well as simple to perform. In addition, the waiting time for the identification result from the sample setting in the case of mass spectrometry is 15 minutes, or even shorter. This has a significant value in the diagnostic and therapeutic process as well as in the economic aspect. An advantage of these methods is also the possibility of differentiating microorganisms being closely related phylogenetically. Also, the development of molecular biology methods, allowing the study of the similarity between bacteria, has caused changes in the systematics and reclassifications within previously known families and genera. These bacteria are commonly found in the natural environment: in water, soil, on plants, in the air. They have also been isolated from animals.

The aim of the work was to draw attention to newly emerging bacterial species, which are increasingly often isolated in human infections. The work includes data from our own diagnostic practice and from the available literature.

Gram-positive rods

The newly appearing bacterial species belong to morphologically different groups of bacteria. Among the Gram-positive rods, the genera: Arcanobacterium and Brevibacterium are increasingly often isolated. Arcanobacterium spp. is non-motile, non-sporing, pleomorphic rods. This genus was reclassified from the Corynebacterium genus in 1982 [13]. This bacterium possesses characteristic fatty acids in the cell wall; it does not produce catalase and belongs to facultative anaerobes. In the microscopic picture it takes the form of irregular cells, arranged in groups of two or three resembling the letters T, V, L, X, Y. The genus Arcanobacterium includes the species Arcanobacterium haemolyticum [47]. On solid substrates, this bacterium can form two types of colony morphology: smooth and rough. Most strains form smooth colonies. Strains with such colony appearance trigger beta-haemolysis, do not produce β-glucuronidase, and ferment sucrose and trehalose. Strains with rough colonies do not induce haemolysis, produce β-glucuronidase and do not ferment sucrose and trehalose. Strains with smooth colonies are more likely to cause skin infections, while the rough ones, in most cases of infections, are isolated from the material originating from the respiratory tract [46, 57]. Little is known about the virulence factors of these bacteria. A. haemolyticum produces phospholipase D and neuraminidase. Phospholipase D breaks down sphingomyelin by causing necrosis of the skin and subcutaneous tissue and allows the bacteria to spread into the tissues. Phospholipase D also recognises lipid compounds in host cells, leading to increased bacterial adhesion to these cells [22]. Phospholipase D enhances activity of the cholesterol-dependent cytolysin called arcanolysin produced by the protein of this species. In the chemical structure of this enzyme, alanine occurs instead of cysteine. Arcanolysin displays specificity for human, rabbit, sheep and bovine erythrocytes [18]. A. haemolyticum is often described as a “mysterious bacterium” because it can be considered as an impurity or microbiota component and omitted as the etiological agent of the infection [40, 57]. The most common form of A. haemolyticum infection is pharyngitis and tonsillitis. It is estimated that even 0.5–2.5% of the cases of pharyngitis can be induced by this species, and 20–50% of the cases of pharyngitis with this aetiology are accompanied by a rash [32, 40]. Less often, these bacteria can cause osteoarthritis [5, 50], necrotizing fasciitis [44, 50], dermatitis, inflammation of the soft tissue and connective tissue [23, 36]. These bacteria usually remain sensitive to antibiotics such as penicillins, cephalosporins, carbapenems, macrolides, fluoroquinolones, tetracyclines, rifampicin and vancomycin. This is confirmed by research results (unpublished data, Sękowska). In the treatment of deep infections, penicillin is used in high doses as a monotherapy or in combination with gentamicin. In our hospital, A. haemolyticum strains have been isolated mainly from diabetic patients with skin and subcutaneous tissue infections, lower limb ulcers, as well as from a stump after limb amputation.

Brevibacterium spp. is a catalase positive, obligate aerobe, able to grow in a wide range of pH (5.5–9.5) and on a substrate containing sodium chloride in a concentration of 6.5% (w/v). In the cell wall of these bacteria, the following fatty acids are present: pentadecanoic, heptadecanoic and meso-diaminopimelic. Brevibacterium spp. produces methanethiol (methyl mercaptan) from L-methionine, which determines its characteristic odour. This genus is commonly found in soil and water, as well as on human skin. It has also been isolated from fresh milk and ripe cheese, and due to its specific smell it is used in the cheese-making industry for the production of Liverat, Reclette, Limburger and Năsal cheeses. The most frequently reported cases of infections with Brevibacterium casei and Brevibacterium otitidis are associated with peritonitis [3, 11, 19, 34, 39]. The following cases of infection have been described: blood [6, 34], brain abscesses [28], eyeball [7] or central nervous system inflammation [16, 28]. In our hospital, Brevibacterium spp. strains have been isolated from the blood and biomaterials from patients with a generalised infection and catheter infection. One case of isolating B. casei from kidney preservation fluid has also been recorded, but most likely it was the contamination of the sample from the external environment. All cultured strains were sensitive to imipenem and vancomycin. In turn, the sensitivity to penicillin, cefotaxime, clindamycin and ciprofloxacin varied, from strains fully sensitive through reduced sensitivity to completely resistant strains.

Streptococci with special nutritional requirements

Other bacteria which are increasingly often isolated from clinical specimens are streptococci with special nutritional requirements, belonging to the genera Granulicatella and Abiotrophia. These bacteria require pyridoxal, cysteine and vitamin B6 to grow. They are catalase-negative, facultatively anaerobic. They are part of the upper respiratory tract microbiota, the gastrointestinal tract and the urogenital system. Depending on the availability of the aforementioned compounds in the environment, they may create forms from typical seed grains, through grain-sticks to regular cylindrical forms with a tendency to form chains. Colony morphology on solid substrates also depends on the availability of nutrients in the substrate. Around the colony, there may occur haemolysis of the type α or γ.

The following species are usually isolated from the cases of infection: G. adiacens, G. elegans, G. paraadiacens. Risk factors for Granulicatella spp. include: steroid therapy, intravenous therapy, eating disorders (including anorexia, bulimia, but also dietary change), circulatory disorders and diabetes. Most often, these bacteria cause infective endocarditis (IE) on natural and artificial valves. Granulicatella spp. may be an etiological factor even in 5% of IE [1, 37, 55, 56]. The incidence of IE with this aetiology is 44% on the aortic valve, 38% mitral, 13% tricuspid, and in 13% it is a multivalve IE [43, 48, 56]. G. adiacens, besides Streptococcus mutans and Veilonella atypica, is the most frequently isolated microorganism from the biofilm formed on prostheses [37]. Bacteria of the Granulicatella genus may cause up to 2% of bacteraemia, and also infections of the eyes [27, 53], osteoarthritis [59], boils [51]. The results of our studies confirm the participation of Granulicatella spp. in wound infections, abdominal cavities and abscesses (unpublished data, Sękowska). The isolated Granulicatella spp. strains were mostly multi-susceptible, but the strain was also cultured with sensitivity preserved only to cefotaxime. Results of the research conducted by Prasidthrathsint and Fisher [41] suggest that sensitivity to penicillin and ceftriaxone may be related to the species. The strains of G. elegans were sensitive to the above-mentioned antibiotics in 80% and 90% respectively, and G. adiacens in 39.4% and 47.2%. Over 90% of the strains from both species were sensitive to meropenem, levofloxacin and vancomycin. Renz et al. [45] described the relationship between the presence of Granulicatella spp. and the development of caries and periodontal diseases.

Abiotrophia spp., in contrast to Granulicatella spp. produces β- and α-galactosidase. The genus contains one species of Abiotrophia defectiva, which can cause bacteraemia, keratitis [38], oral mucositis and gingivitis [58], urinary tract infection [17] and infective endocarditis [15, 17]. More commonly, Abiotrophia spp. infections are reported in the group of patients with neutropenia. In the treatment of IE with this aetiology, the medications of choice are penicillins in combination with gentamicin [15]. These strains remain sensitive to ceftriaxone, clindamycin, levofloxacin and vancomycin [41].

Gram-negative rods

Another group of bacteria, in which systematic changes has taken place and new species have appeared, is Gram-negative rods from the genus Pantoea belonging to the Erwiniaceae family [2]. The species Pantoea agglomerans has been reclassified from the genus Enterobacter. It is a flagellated bacterium which produces a yellow dye, capable of growth at 40°C. Often referred to as “agricultural bacterium”, due to its widespread occurrence in the natural environment (fruits, vegetables, plants, water, soil). It has also been isolated from animal waste. An important group with risk of infection caused by these rods is gardeners, and in hospital conditions preterm babies, new-borns with congenital malformations, as well as patients for whom biomaterials have been used. Most often a disruption of skin continuity constitutes a portal of infection [11], and the source of infections may be preparations administered parenterally, blood products, blood substitutes, bandages and dressings. The available literature suggests that infections with these bacteria most often affect blood [4, 8, 10, 29, 49, 54] and the respiratory system [4, 8, 14, 54]. Cases of peritonitis [25], endophthalmitis [31] and postoperative meningitis have also been reported [49]. In the studies, Pantoea spp. strains have been isolated from wounds, blood, biomaterials and urine mainly from oncological and diabetic patients. Multidrug resistant strains have also been isolated from the body cavity fluid from a patient with acute respiratory failure and an ESBL-positive strain from a child with leukaemia. Several strains from the hospital environment (a surgical trolley and a basin siphon) have been recorded (unpublished data, Sękowska).

In the group of Gram-negative non-fermenting rods in the family Comamonadaceae, a new genus Delftia has been formed, which includes the species Delftia acidovorans (formerly Comamonas acidovorans). Reclassification was based on the 16S rRNA sequence [33]. These are aerobic rods which produce oxidase and indole from tryptophan. This bacterium is commonly isolated from the hospital environment and has been considered non-pathogenic for many years. Delftibactin is a characteristic feature of this bacterium. It is a substance which neutralises gold ions, turning them into harmless golden nanoparticles. They accumulate outside the bacterial cells to form a red-coloured colloidal solution [21]. Hence, this bacterium is often called “King Midas bacterium”. On solid substrates D. acidovorans grows in the form of golden-coloured or golden gloss colonies. This bacterium has also been isolated from thermised milk and sewage. Among risk factors, the presence of biomaterials and diseases: AIDS and cancer are listed [9]. Due to the ability to create biofilms, cases of catheter-associated bacteraemia associated are most frequently reported [12, 20, 24, 30, 42, 52]. This is also confirmed by observations from our centre, although the most common strains of Delftia spp. have been isolated from swabs from chronic wounds and from surgical site infections (unpublished data, Sękowska). Descriptions of the cases of empyema [26], pneumonia [9], IE [35] and urinary tract infections have also appeared [25]. The rods of D. acidovorans are susceptible to a wide range of cephalosporins, ureidopenicillin, cotrimoxazole, fluoroquinolones and tetracycline [35, unpublished data, Sękowska].

Summary

Increasingly frequent isolation of bacterial species described so far as “non-pathogenic” from infections is also associated with the growing group of immunocompromised people (angiopathy, reduced T-cell activity in the immune response, decreased neutrophil function, low level of proinflammatory cytokine secretion), civilisation or wasting diseases. On the other hand, the bacteria themselves with their easy adaptation to new living conditions also have an impact on this situation. They are often species growing in a wide range of temperatures and pH, as well as having low nutritional requirements (oligotrophy). The virulence of these bacteria is more strongly expressed in the production of factors that facilitate adhesion to host cells, colonisation of the gastrointestinal tract in particular and possibly subsequent infection.

The progress of medicine in recent years has undoubtedly positively influenced the life expectancy of patients with certain diseases (diabetes, atherosclerosis, cardiovascular diseases) and in many situations contributed to the improvement of its quality. Unfortunately, it has also made possible infections caused by bacteria, which were previously considered to be non-pathogenic, and the number of such cases will probably still rise.

Adam E.L., Siciliano R.F., Gualandro D.M., Calderaro D., Issa V.S., Rossi F., Caramelli B., Mansur A.J., Strabelli T.M.: Case series of infective endocarditis caused by Granulicatella species. Int. J. Infect. Dis. 31, 56–58 (2015)AdamE.L.SicilianoR.F.GualandroD.M.CalderaroD.IssaV.S.RossiF.CaramelliB.MansurA.J.StrabelliT.M.Case series of infective endocarditis caused by Granulicatella speciesInt. J. Infect. Dis.315658201510.1016/j.ijid.2014.10.02325461651Search in Google Scholar

Aldeolu M., Alnajar S., Naushad S., Gupta R.: Genome-based phylogeny and taxonomy of the Enterobacteriales”: proposal for Enterobacteriales ord nov divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov, Yersiniaceae fam. nov,. Hafniaceae fam. nov., Morganellaceae fam. nov., Budviviaceae fam. nov. Int. J. Syst. Evol. Microbiol. 66, 5575–5599 (2016)AldeoluM.AlnajarS.NaushadS.GuptaR.Genome-based phylogeny and taxonomy of the Enterobacteriales”: proposal for Enterobacteriales ord nov divided into the families EnterobacteriaceaeErwiniaceae fam. nov., Pectobacteriaceae fam. nov, Yersiniaceae fam. nov,. Hafniaceae fam. nov., Morganellaceae fam. nov., Budviviaceae fam. novInt. J. Syst. Evol. Microbiol.6655755599201610.1099/ijsem.0.00148527620848Search in Google Scholar

Althaf M.M., Abdelsalam M.S., Alsunaid M.S., Hussein M.H.: Brevibacterium casei isolated as a cause of relapsing peritonitis. BMJ Case Rep. DOI:10.1136/bcr-2014-203611 (2014)AlthafM.M.AbdelsalamM.S.AlsunaidM.S.HusseinM.H.Brevibacterium casei isolated as a cause of relapsing peritonitisBMJ Case RepDOI:10.1136/bcr-2014-2036112014396293924648477Apri DOISearch in Google Scholar

Aly N.Y., Salmeen H.N., Lila R.A., Nagaraja P.A.: Pantoea agglomerans bloodstream infection in preterm neonates. Med. Princ. Pract. 17, 500–503 (2008)AlyN.Y.SalmeenH.N.LilaR.A.NagarajaP.A.Pantoea agglomerans bloodstream infection in preterm neonatesMed. Princ. Pract.17500503200810.1159/00015157518836282Search in Google Scholar

Bae S.Y., Choi S.M., Kang S.J., Jang H.C., Park K.H., Jung S.I., Shin J.H.: A case of Arcanobacterium haemolyticum bacteremia and osteomyelitis diagnosed by 16s rRNA sequencing. Infect. Chemother. 42, 241–243 (2010)BaeS.Y.ChoiS.M.KangS.J.JangH.C.ParkK.H.JungS.I.ShinJ.H.A case of Arcanobacterium haemolyticum bacteremia and osteomyelitis diagnosed by 16s rRNA sequencingInfect. Chemother.42241243201010.3947/ic.2010.42.4.241Search in Google Scholar

Bal Z.S., Sen S., Karapinor D.Y., Aydemir S., Vardar F.: The first reported catheter-related Brevibacterium casei bloodstream infection in a child with acute leukemia and review of the literature. Braz. J. Infect. Dis. 19, 213–215 (2015)BalZ.S.SenS.KarapinorD.Y.AydemirS.VardarF.The first reported catheter-related Brevibacterium casei bloodstream infection in a child with acute leukemia and review of the literatureBraz. J. Infect. Dis.19213215201510.1016/j.bjid.2014.09.01125636191Search in Google Scholar

Banu A., Ks S., M V., Er N.: Post-traumatic endophthalmitis due to Brevibacterium casei: A case report. Australas Med. J. 6, 70–72 (2013)BanuA.KsS.MV.ErN.Post-traumatic endophthalmitis due to Brevibacterium casei: A case reportAustralas Med. J.67072201310.4066/AMJ.2013.1523359352123483044Search in Google Scholar

Bergman K.A., Arends J.P., Scholvinck J.K.: Pantoea agglomerans septicemia in three newborn infants. Paediatric. Inf. Dis. J. 26, 453–454 (2007)BergmanK.A.ArendsJ.P.ScholvinckJ.K.Pantoea agglomerans septicemia in three newborn infantsPaediatric. Inf. Dis. J.26453454200710.1097/01.inf.0000261200.83869.9217468662Search in Google Scholar

Bilgin H., Sarmis A., Tigen E., Soyletir G., Mulazimoglu L.: Delftia acidovorans: A rare patogen in immunocompetent and immunocompromised patients. Can. J. Infect. Dis. Med. Microbiol. 26, 277–279 (2015)BilginH.SarmisA.TigenE.SoyletirG.MulazimogluL.Delftia acidovorans: A rare patogen in immunocompetent and immunocompromised patientsCan. J. Infect. Dis. Med. Microbiol.26277279201510.1155/2015/973284464401326600818Search in Google Scholar

Cheng A., Liu C.Y., Tsai H.Y., Hsu M.S., Yang C.J., Hyang Y.T., Liao C.H., Hsueh P.R.: Bacteremia caused by Pantoea agglomerans at a medical center in Taiwan, 2000–2010. J. Microbiol. Immunol. Infect. 46, 187–194 (2013)ChengA.LiuC.Y.TsaiH.Y.HsuM.S.YangC.J.HyangY.T.LiaoC.H.HsuehP.R.Bacteremia caused by Pantoea agglomerans at a medical center in Taiwan, 2000–2010J. Microbiol. Immunol. Infect.46187194201310.1016/j.jmii.2012.05.00522841622Search in Google Scholar

Choi J.S., Kim C.S., Park J.W., Bae E.H., Ma S.K., Kim S.W.: Consecutive episodes of peritonitis in a patient undergoing peritoneal dialysis caused by unusual organisms: Brevibacterium and Pantoea agglomerans. Kidney Res. Clin. Pract. 31, 121–123 (2012)ChoiJ.S.KimC.S.ParkJ.W.BaeE.H.MaS.K.KimS.W.Consecutive episodes of peritonitis in a patient undergoing peritoneal dialysis caused by unusual organisms: Brevibacterium and Pantoea agglomeransKidney Res. Clin. Pract.31121123201210.1016/j.krcp.2012.04.319471512926889419Search in Google Scholar

Chotikanatis K., Backer M., Rosas-Garcia G., Hammerschlagg M.R.: Recurrent intravascular-catheter-related bacteremia caused by Delftia acidovorans in a hemodialysis patient. J. Clin. Microbiol. 49, 3418–3421 (2011)ChotikanatisK.BackerM.Rosas-GarciaG.HammerschlaggM.R.Recurrent intravascular-catheter-related bacteremia caused by Delftia acidovorans in a hemodialysis patientJ. Clin. Microbiol.4934183421201110.1128/JCM.00625-11316560121775546Search in Google Scholar

Collins M.D., Jones D., Schofield G.M.: Reclassification of Corynebacterium haemolyticum (MacLean, Liebow & amp; Rosenberg) in the genus Arcanobacterium gen. nov. as Arcanobacterium haemolyticum nom. rev. comb. nov. J. Gen. Microbiol. 128, 1279–1281 (1982)CollinsM.D.JonesD.SchofieldG.M.Reclassification of Corynebacterium haemolyticum (MacLean, Liebow & amp; Rosenberg) in the genus Arcanobacterium gen. nov. as Arcanobacterium haemolyticum nom. rev. comb. novJ. Gen. Microbiol.12812791281198210.1099/00221287-128-6-12797119737Search in Google Scholar

Cruz AT, Cazacu AC, Allen CH. Pantoea agglomerans, a plant pathogen causing human disease. J. Clin. Microbiol. 45, 1989–1899 (2007)CruzATCazacuACAllenCHPantoea agglomerans, a plant pathogen causing human diseaseJ. Clin. Microbiol.4519891899200710.1128/JCM.00632-07193308317442803Search in Google Scholar

Escarcega E., Trovato C., Idahosa O., Gillard J., Stankewicz H.: Abiotrophia defectiva endocarditis: an easy miss. Clin. Pract. Cases Emerg. Med. 1, 229–231 (2017)EscarcegaE.TrovatoC.IdahosaO.GillardJ.StankewiczH.Abiotrophia defectiva endocarditis: an easy missClin. Pract. Cases Emerg. Med.1229231201710.5811/cpcem.2017.3.33126596517729849317Search in Google Scholar

Fe Talento A., Malnick H., Cotter M., Brady A., McGowan D., Smith E., Fitzpatrick F.: Brevibacterium otitidis: an elusive cause of neurosurgical infection. J. Med. Microbiol. 62, 486–488 (2013)Fe TalentoA.MalnickH.CotterM.BradyA.McGowanD.SmithE.FitzpatrickF.Brevibacterium otitidis: an elusive cause of neurosurgical infectionJ. Med. Microbiol.62486488201310.1099/jmm.0.043109-023222861Search in Google Scholar

Foley E.D., Omran M.B., Bora V., Castresana M.R.: Cardiogenic and septic shock associated with aortic and mitral valve infective endocarditis caused by Abiotrophia defectiva from a urinary tract infection. SAGE. Open Med. Case Rep. 6, 1–4 (2018)FoleyE.D.OmranM.B.BoraV.CastresanaM.R.Cardiogenic and septic shock associated with aortic and mitral valve infective endocarditis caused by Abiotrophia defectiva from a urinary tract infection. SAGEOpen Med. Case Rep.614201810.1177/2050313X18787700604723330023056Search in Google Scholar

Gellings P.S., McGee D.J.: Arcanobacterium haemolyticum phospholipase D enzymatic activity promotes the hemolytic activity of the cholesterol-dependent cytolysin arcanolysin. Toxins, DOI:10.3390/toxins10060213 (2018)GellingsP.S.McGeeD.J.Arcanobacterium haemolyticum phospholipase D enzymatic activity promotes the hemolytic activity of the cholesterol-dependent cytolysin arcanolysinToxinsDOI:10.3390/toxins100602132018602451429882842Apri DOISearch in Google Scholar

Gruner E., Pfyffer G.E., von Graevenitz A.: Characterization of Brevibacterium spp. from clinical specimens. J. Clin. Microbiol. 31, 1408–1412 (1993)GrunerE.PfyfferG.E.von GraevenitzA.Characterization of Brevibacterium spp. from clinical specimensJ. Clin. Microbiol.3114081412199310.1128/jcm.31.6.1408-1412.19932655528314980Search in Google Scholar

Hagyia H., Murase T., Sugiyama J., Kuroe Y., Nojima H., Naito H., Hagioka S., Morimoto N.: Delftia acidovorans bacteremia caused by bacterial translocation after organophosphorus poisoning in an immunocompetent adult patient. J. Infect. Chemother. 19, 338–341 (2013)HagyiaH.MuraseT.SugiyamaJ.KuroeY.NojimaH.NaitoH.HagiokaS.MorimotoN.Delftia acidovorans bacteremia caused by bacterial translocation after organophosphorus poisoning in an immunocompetent adult patientJ. Infect. Chemother.19338341201310.1007/s10156-012-0472-x22992836Search in Google Scholar

Johnston C.W., Wyatt M.A., Ibrahim A., Shuster J., Southam G., Magarvey N.A.: Gold biomineralization by a metallophore from a gold-associated microbe. Nat. Chem. Biol. 9, 241–243 (2013)JohnstonC.W.WyattM.A.IbrahimA.ShusterJ.SouthamG.MagarveyN.A.Gold biomineralization by a metallophore from a gold-associated microbeNat. Chem. Biol.9241243201310.1038/nchembio.1179Search in Google Scholar

Jost B.H., Lucas E.A., Billington S.J., Ratner A.J., McGee D.J.: Arcanolysin is a cholesterol-dependent cytolysin of the human patogen Arcanobacterium haemolyticum. BMC Microbiology, 11, 239 (2011)JostB.H.LucasE.A.BillingtonS.J.RatnerA.J.McGeeD.J.Arcanolysin is a cholesterol-dependent cytolysin of the human patogen Arcanobacterium haemolyticumBMC Microbiology11239201110.1186/1471-2180-11-239Search in Google Scholar

Kang H., Park G., Kim H., Hang K.: Haemolytic differential identification of Arcanobacterium haemolyticum isolated from a patient with diabetic foot ulcers. JMM Case Rep. 12, e005016 (2016)KangH.ParkG.KimH.HangK.Haemolytic differential identification of Arcanobacterium haemolyticum isolated from a patient with diabetic foot ulcersJMM Case Rep.12e005016201610.1099/jmmcr.0.005016Search in Google Scholar

Kawamura I., Yagi T., Hatakeyama K., Ohkura T., Ohkusu K., Takahashi Y., Kojima S., Hasegawa Y.: Recurrent vascular catheter-related bacteremia caused by Delftia acidovorans with different antimicrobial susceptibility profiles. J. Infect. Chemother. 1, 111–113 (2011)KawamuraI.YagiT.HatakeyamaK.OhkuraT.OhkusuK.TakahashiY.KojimaS.HasegawaY.Recurrent vascular catheter-related bacteremia caused by Delftia acidovorans with different antimicrobial susceptibility profilesJ. Infect. Chemother.1111113201110.1007/s10156-010-0089-xSearch in Google Scholar

Kazancioglu R., Buyukaidin B., Iraz M., Alay M., Erkoc M.: An unusual cause of peritonitis in peritoneal dialysis patients: Pantoea agglomerans. J. Infect. Dev. Ctries. 14, 919–922 (2014)KazanciogluR.BuyukaidinB.IrazM.AlayM.ErkocM.An unusual cause of peritonitis in peritoneal dialysis patients: Pantoea agglomeransJ. Infect. Dev. Ctries.14919922201410.3855/jidc.3785Search in Google Scholar

Khan S., Sistla S., Dhodapkar R., Parija S.C.: Fatal Delftia acidovorans in an immunocompetent patient with empyema. Asian Pac. J. Trop. Biomed. 2, 923–924 (2012)KhanS.SistlaS.DhodapkarR.ParijaS.C.Fatal Delftia acidovorans in an immunocompetent patient with empyemaAsian Pac. J. Trop. Biomed.2923924201210.1016/S2221-1691(12)60254-8Search in Google Scholar

Ku C.A., Forcina B., LaSala P.R., Nguyen J.: Granulicatella adiacens, an unusual causative agent in chronic dacryocystitis. J. Ophthalmic. Inflamm. Infect. DOI:10.1186/s12348-015-0043-2 (2015)KuC.A.ForcinaB.LaSalaP.R.NguyenJ.Granulicatella adiacens, an unusual causative agent in chronic dacryocystitisJ. Ophthalmic. Inflamm. InfectDOI:10.1186/s12348-015-0043-22015439562225897344Apri DOISearch in Google Scholar

Kumar V.A., Augustine D., Panikar D., Nandakumar A., Dinesh K.R., Karim S., Philip R.: Brevibavterium casei as a cause of brain abscess in a immunocompetent patient. J. Clin. Microbiol. 49, 4374–4376 (2011)KumarV.A.AugustineD.PanikarD.NandakumarA.DineshK.R.KarimS.PhilipR.Brevibavterium casei as a cause of brain abscess in a immunocompetent patientJ. Clin. Microbiol.4943744376201110.1128/JCM.01086-11323299122012007Search in Google Scholar

Lalas K.M., Erichsen D.: Sporadic Pantoea agglomerans bacteremia in a near-term female: case report and review of literature. Jpn. J. Inf. Dis. 63, 290–291 (2010)LalasK.M.ErichsenD.Sporadic Pantoea agglomerans bacteremia in a near-term female: case report and review of literatureJpn. J. Inf. Dis.63290291201010.7883/yoken.63.290Search in Google Scholar

Lang K.J., Chinzowu T., Cann K.J.: Delftia acidovorans as an unusual causative organism in line-related sepsis. Indian J. Microbiol. 52, 102–103 (2012)LangK.J.ChinzowuT.CannK.J.Delftia acidovorans as an unusual causative organism in line-related sepsisIndian J. Microbiol.52102103201210.1007/s12088-011-0221-3329858223450157Search in Google Scholar

Lee N.E., Chung I.Y., Park J.M.: A case of Pantoea endophthalmitis. Korean J. Ophthalmol. 24, 318–321 (2010)LeeN.E.ChungI.Y.ParkJ.M.A case of Pantoea endophthalmitisKorean J. Ophthalmol.24318321201010.3341/kjo.2010.24.5.318295527821052515Search in Google Scholar

Linder R.: Rhodococcus equi and Arcanobacterium haemolyticum: two coryneform bacteria increasingly recognized as agents of human infection. Emerg. Infect. Dis. 3, 145–153 (1997)LinderR.Rhodococcus equi and Arcanobacterium haemolyticum: two coryneform bacteria increasingly recognized as agents of human infectionEmerg. Infect. Dis.3145153199710.3201/eid0302.97020726276249204295Search in Google Scholar

Lipuma J.J., Currie B.J., Peacock S.J., Vandamme P., Whittier S.: Burkholderia, Cupriavidus, Pandoraea, Stenotrophomonas, Ralstonia, Brevundimonas, Comamonas, Delftia, and Acidovorax (in) Manual of Clinical Microbiology, ed. J. Versalovic, 10th ed. ASM Press, Washington, 2011, p. 693–713LipumaJ.J.CurrieB.J.PeacockS.J.VandammeP.WhittierS.Burkholderia, Cupriavidus, Pandoraea, Stenotrophomonas, Ralstonia, Brevundimonas, Comamonas, Delftia, and Acidovorax(in)Manual of Clinical Microbiologyed.VersalovicJ.10th ed.ASM PressWashington2011p.693713Search in Google Scholar

Magi B., Migliorini L., Santoni A., Cusi M.G.: Brevibacterium casei bacteraemia in a port-a-cath cartier patient: a case report and literature review. Infez. Med. 3, 263–265 (2018)MagiB.MiglioriniL.SantoniA.CusiM.G.Brevibacterium casei bacteraemia in a port-a-cath cartier patient: a case report and literature reviewInfez. Med.32632652018Search in Google Scholar

Mahmood S., Taylor K.E., Overman T.L., McCormick M.I.: Acute infective endocarditis caused by Delftia acidovorans, a rare patogen complicating intravenous drug use. J. Clin. Microbiol. 50, 3799–3800 (2012)MahmoodS.TaylorK.E.OvermanT.L.McCormickM.I.Acute infective endocarditis caused by Delftia acidovorans, a rare patogen complicating intravenous drug useJ. Clin. Microbiol.5037993800201210.1128/JCM.00553-12348620622933597Search in Google Scholar

Miyamoto H., Suzuki T., Murakami S., Fukuoka M., Tanaka Y., Kondo T., Nishimiya T., Suemori K., Tauchi H., Osawa H.: Bacteriological characteristics of Arcanobacterium haemolyticum isolated from seven patients with skin and soft-tissue infections. J. Med. Microbiol. 64, 369–374 (2015)MiyamotoH.SuzukiT.MurakamiS.FukuokaM.TanakaY.KondoT.NishimiyaT.SuemoriK.TauchiH.OsawaH.Bacteriological characteristics of Arcanobacterium haemolyticum isolated from seven patients with skin and soft-tissue infectionsJ. Med. Microbiol.64369374201510.1099/jmm.0.00003825666838Search in Google Scholar

Nedumgottil B.M.: Relative presence of Streptococcus mutans, Veilonella atypica and Granulicatella adiacens in biofilm of complete dentures. J. Ind. Prostodont. Soc. 18, 24–28 (2018)NedumgottilB.M.Relative presence of Streptococcus mutansVeilonella atypica and Granulicatella adiacens in biofilm of complete denturesJ. Ind. Prostodont. Soc.1824282018Search in Google Scholar

Paulus Y.M., Cockerham G.C.: Abiotrophia defectiva causing infectious crystalline keratopathy and corneal ulcer after penetrating keratoplasty: a case report. J. Ophthalmic. Inflamm. Infect. DOI:10.1186/1869-5760-3-20 (2013)PaulusY.M.CockerhamG.C.Abiotrophia defectiva causing infectious crystalline keratopathy and corneal ulcer after penetrating keratoplasty: a case reportJ. Ophthalmic. Inflamm. InfectDOI:10.1186/1869-5760-3-202013360511223514629Apri DOISearch in Google Scholar

Poesen K., Meeus G., Boudewijns M., Colgert J., Doubel P.: Relapsing Brevibacterium casei peritonitis: value of 16S rRNA gene sequencing in accurate species identification. Perit. Dial. Int. 3293, 341–344 (2012)PoesenK.MeeusG.BoudewijnsM.ColgertJ.DoubelP.Relapsing Brevibacterium casei peritonitis: value of 16S rRNA gene sequencing in accurate species identificationPerit. Dial. Int.3293341344201210.3747/pdi.2011.00179352544022641738Search in Google Scholar

Poplin V., McKinsey D.S.: Arcanobacterium brain abscesses, subdural emphyema and bacteremia complicating Epstein-Barr virus mononucleosis. Kansas J. Med. 11, 11–14 (2018)PoplinV.McKinseyD.S.Arcanobacterium brain abscesses, subdural emphyema and bacteremia complicating Epstein-Barr virus mononucleosisKansas J. Med.111114201810.17161/kjm.v11i1.8678Search in Google Scholar

Prasidthrathsint K., Fisher M.A.: Antimicrobial susceptibility patterns among a large, nationwide kohort of Abiotrophia and Granulicatella clinical isolates. J. Clin. Microbiol. 55, 1025–1031 (2017)PrasidthrathsintK.FisherM.A.Antimicrobial susceptibility patterns among a large, nationwide kohort of Abiotrophia and Granulicatella clinical isolatesJ. Clin. Microbiol.5510251031201710.1128/JCM.02054-16537782828077699Search in Google Scholar

Preiswerk B., Ullrich S., Speich R., Bloemberg G.V., Hombach M.: Human infection with Delftia tsuruhatensis isolated from a central venous catheter. J. Med. Microbiol. 60, 246–248 (2011)PreiswerkB.UllrichS.SpeichR.BloembergG.V.HombachM.Human infection with Delftia tsuruhatensis isolated from a central venous catheterJ. Med. Microbiol.60246248201110.1099/jmm.0.021238-020965913Search in Google Scholar

Quiroga B., Arroyo D., Verde E., Eworo A., Luno J.: Infective endocarditis on a percutaneous prosthetic aortic valve with associated glomerulopathy due to Granulicatella adiacens. Braz. J. Infect. Dis. 16, 601–602 (2012)QuirogaB.ArroyoD.VerdeE.EworoA.LunoJ.Infective endocarditis on a percutaneous prosthetic aortic valve with associated glomerulopathy due to Granulicatella adiacensBraz. J. Infect. Dis.16601602201210.1016/j.bjid.2012.07.01123146153Search in Google Scholar

Ramey N.A., Burkat C.N:. Re: “Orbital necrotizing fasciitis and osteomyelitis caused by Arcanobacterium haemolyticus: a case report”. Ophthal. Plast. Reconstr. Surg. DOI:10.1097/IOP.0000000000000413 (2015)RameyN.A.BurkatC.NRe: “Orbital necrotizing fasciitis and osteomyelitis caused by Arcanobacterium haemolyticus: a case report”Ophthal. Plast. Reconstr. SurgDOI:10.1097/IOP.00000000000004132015Apri DOISearch in Google Scholar

Renz N., Chevaux F., Borens O., Ttrampuj A.: Successful treatment of periprosthetic joint infection caused by Granulicatella para-adiacens with prosthesis retention: a case report. BMC Musculoskelet Disord. 12, 156 (2016)RenzN.ChevauxF.BorensO.TtrampujA.Successful treatment of periprosthetic joint infection caused by Granulicatella para-adiacens with prosthesis retention: a case reportBMC Musculoskelet Disord.12156201610.1186/s12891-016-1008-9Search in Google Scholar

Ruther H.S., Philips K., Ross D., Crawford A., Weidner M.P., Sammra O., Lamler M.C., McGee D.J.: Smooth and rough biotypes of Arcanobacterium haemolyticum can be genetically distinguished at the arcanolysin locus. Plos One, 18, e0137346 (2015)RutherH.S.PhilipsK.RossD.CrawfordA.WeidnerM.P.SammraO.LamlerM.C.McGeeD.J.Smooth and rough biotypes of Arcanobacterium haemolyticum can be genetically distinguished at the arcanolysin locusPlos One18e0137346201510.1371/journal.pone.0137346Search in Google Scholar

Sammra O., Friis-Møller A., Balbutskaya A., Hijazin M., Nagib S., Alber J.: Phenotypic and genotypic characteristics of Arcanobacterium haemolyticum isolated from clinical samples in a Danish hospital. Folia Microbiol. 59, 369–374 (2014)SammraO.Friis-MøllerA.BalbutskayaA.HijazinM.NagibS.AlberJ.Phenotypic and genotypic characteristics of Arcanobacterium haemolyticum isolated from clinical samples in a Danish hospitalFolia Microbiol.59369374201410.1007/s12223-014-0308-4Search in Google Scholar

Sim B.W., Koo R.M., Hawkins C., Bowden F., Watson A.: Granulicatella adiacens subacute bacterial endocarditis as the underlying cause of type II mixed cryoglobulinaemia. BMJ Case Rep. DOI:10.1136/bcr-2014-206091 (2015)SimB.W.KooR.M.HawkinsC.BowdenF.WatsonA.Granulicatella adiacens subacute bacterial endocarditis as the underlying cause of type II mixed cryoglobulinaemiaBMJ Case RepDOI:10.1136/bcr-2014-2060912015Apri DOISearch in Google Scholar

Siwakoti S., Sah R., Rajbhandari R.S., Khanal B.: Pantoea agglomerans infections in children: report of two cases. Case Rep. Pediatr. DOI:10.1155/2018/4158734 (2018)SiwakotiS.SahR.RajbhandariR.S.KhanalB.Pantoea agglomerans infections in children: report of two casesCase Rep. PediatrDOI:10.1155/2018/41587342018Apri DOISearch in Google Scholar

Stone L.A., Harshbarger R.J. 3rd.: Orbital necrotizing fasciitis and osteomyelitis caused by Arcanobacterium haemolyticus: a case report. Ophthal. Plast. Reconstr. Surg. 31, 31–33 (2015)StoneL.A.HarshbargerR.J.3rd.Orbital necrotizing fasciitis and osteomyelitis caused by Arcanobacterium haemolyticus: a case reportOphthal. Plast. Reconstr. Surg.3131332015Search in Google Scholar

Swain B., Otta S.: Granulicatella adiacens an unusual causative agent for carbuncle. Indian J. Pathol. Microbiol. 55, 609–610 (2012)SwainB.OttaS.Granulicatella adiacens an unusual causative agent for carbuncleIndian J. Pathol. Microbiol.55609610201210.4103/0377-4929.107859Search in Google Scholar

Tabak O., Mete B., Aydin T., Mandel M.N., Oltu B., Ozaras R., Tabak F.: Port-related Delftia tsuruhatensis bacteremia in a patient with breast cancer. New. Microbiol. 36, 199–201 (2013)TabakO.MeteB.AydinT.MandelM.N.OltuB.OzarasR.TabakF.Port-related Delftia tsuruhatensis bacteremia in a patient with breast cancerNew. Microbiol.361992012013Search in Google Scholar

Teo L., Looi A., Seah L.L.: An unusual causative agent for an orbital abscess: Granulicatella adiacens. Orbit, 30, 162–164 (2011)TeoL.LooiA.SeahL.L.An unusual causative agent for an orbital abscess: Granulicatella adiacensOrbit30162164201110.3109/01676830.2011.569631Search in Google Scholar

Tiwari S., Beriha S.S.: Pantoea species causing early onset neonatal sepsis: a case report. J. Med. Case Rep. DOI:10.1186/s13256-015-0670-0 (2015)TiwariS.BerihaS.S.Pantoea species causing early onset neonatal sepsis: a case reportJ. Med. Case RepDOI:10.1186/s13256-015-0670-02015Apri DOISearch in Google Scholar

Vandana K.E., Mukhopadyay C., Ray N.R., Ajith V., Rajath P.: Native valve endocarditis and femoral embolism due to Granulicatella adiacens: a rare case report. Braz. J. Infect. Dis. 14, 634–636 (2010)VandanaK.E.MukhopadyayC.RayN.R.AjithV.RajathP.Native valve endocarditis and femoral embolism due to Granulicatella adiacens: a rare case reportBraz. J. Infect. Dis.14634636201010.1016/S1413-8670(10)70124-0Search in Google Scholar

Wang R., Kaplan A., Guo L., Shi W., Zhou X., Lux R., Zhe X.: The influence of iron availability on human salivary microbial community composition. Microb. Ecol. 64, 152–161 (2012)WangR.KaplanA.GuoL.ShiW.ZhouX.LuxR.ZheX.The influence of iron availability on human salivary microbial community compositionMicrob. Ecol.64152161201210.1007/s00248-012-0013-2337618022318873Search in Google Scholar

Wong V., Turmezei T., Cartmill M., Soo S.: Infective endocarditis caused by Arcanobacterium haemolyticum: a case report. Ann. Clin. Microbiol. Antimicrob. DOI:10.1186/1476-0711-10-17 (2011)WongV.TurmezeiT.CartmillM.SooS.Infective endocarditis caused by Arcanobacterium haemolyticum: a case reportAnn. Clin. Microbiol. AntimicrobDOI:10.1186/1476-0711-10-172011310342021569379Apri DOISearch in Google Scholar

Yacoub A.T., Krishnan J., Acevedo I.M., Halliday J., Grene JN.: Nutritionally variant streptococci bacteremia in cancer patients: a retrospective study, 1999–2014. Meditter. J. Hematol. Infect. Dis. 71, e2015030 (2015)YacoubA.T.KrishnanJ.AcevedoI.M.HallidayJ.GreneJN.Nutritionally variant streptococci bacteremia in cancer patients: a retrospective study, 1999–2014Meditter. J. Hematol. Infect. Dis.71e2015030201510.4084/mjhid.2015.030441838725960858Search in Google Scholar

York J., Fisahn C., Chapman J.: Vertebral osteomyelitis due to Granulicatella adiacens, a nutritionally variant streptococci. Cureus, 28, e808 (2016)YorkJ.FisahnC.ChapmanJ.Vertebral osteomyelitis due to Granulicatella adiacens, a nutritionally variant streptococciCureus28e808201610.7759/cureus.808508583127800289Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo