1. bookVolume 57 (2018): Edizione 3 (January 2018)
Dettagli della rivista
Prima pubblicazione
01 Mar 1961
Frequenza di pubblicazione
4 volte all'anno
Inglese, Polacco
Accesso libero


Pubblicato online: 26 Feb 2022
Volume & Edizione: Volume 57 (2018) - Edizione 3 (January 2018)
Pagine: 213 - 227
Ricevuto: 01 Jan 2018
Accettato: 01 Jul 2018
Dettagli della rivista
Prima pubblicazione
01 Mar 1961
Frequenza di pubblicazione
4 volte all'anno
Inglese, Polacco

Avrahami D., Shai Y.: A new group of antifungal and antimicrobial lipopeptides derived from non-membrane active peptides conjugated to palmitic acid. J. Biol. Chem. 279, 12277–12285 (2004)Search in Google Scholar

Avrahami D., Shai Y.: Bestowing antifungal and antibacterial activities by lipophilic acid conjugation to D,L-amino acidcontaining antimicrobial peptides: A plausible mode of action. Biochemistry-US, 42, 14946–14956 (2003)10.1021/bi035142v14674771Search in Google Scholar

Avrahami D., Shai Y.: Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly and cell selectivity. Biochemistry-US, 41, 2254–2263 (2002)10.1021/bi011549t11841217Search in Google Scholar

Azmi F, Elliot A.G., Marasini N., Ramu S., Ziora Z., Kavanagh A.M., Blaskovich M.A.T., Cooper M.A., Skwarczynski M., Toth I.: Short cationic lipopeptides as effective antibacterial agents: Design, physicochemical properties and biological evaluation. Bioorgan. Med. Chem. 24, 2235–2241 (2016)Search in Google Scholar

Bahar A.A., Ren D.: Antimicrobial Peptides. Pharmaceuticals, 6, 1543–1575 (2013)10.3390/ph6121543387367624287494Search in Google Scholar

Bai Y., Liu S.P., Jiang P., Zhou L., Li J., Tang C., Verma C., Mu Y.G., Beuerman R.W., Pervushin K.: Structure-dependent charge density as a determinant of antimicrobial activity of peptide analogues of defensin. Biochemistry-US, 48, 7229–7239 (2009)10.1021/bi900670d19580334Search in Google Scholar

Bai Y., Liu S.P., Li J.G., Lakshminarayan R., Sarawathi P., Tang C., Ho D.C., Verma C., Beuerman R.W., Pervushin K.: Progressive Structuring of a Branched Antimicrobial Peptide on the Path to the Inner Membrane Target. J. Biol. Chem. 287, 26606–26617 (2012)Search in Google Scholar

Barańska-Rybak W., Pikuła M., Dawgul M., Kamysz W., Trzonkowski P., Roszkiewicz J.: Safety profile of antimicrobial peptides: Camel, Citropin, Protegrin, Temporin A and lipopetide on HaCaT keratinocytes. Acta. Pol. Pharm. 70, 795–801 (2013)Search in Google Scholar

Barchiesi F., Giacometti A., Cirioni O., Arzeni D., Silvestri C., Kamysz W., Abbruzzetti A., Riva A., Kamysz E., Scalise G.: In vitro activity of the synthetic lipopeptide PAL-Lys-Lys-NH(2) alone and in combination with antifungal agents against clinical isolates of Cryptococcus neoformans. Peptides, 28, 1509–1513 (2007)10.1016/j.peptides.2007.07.01017698253Search in Google Scholar

Bhunia A., Mohanram H., Domadia P.N., Torres J., Bhattacharjya S.: Designed beta-Boomerang Antiendotoxic and Antimicrobial peptides. Structures and activities in lipopolysaccharide, J. Biol. Chem. 284, 21991–22004 (2009)Search in Google Scholar

Błażewicz I., Jaśkiewicz M., Piechowicz L., Kamysz W., Nowicki R., Barańska-Rybak W.: Rola peptydów przeciwdrobnoustrojowych w wybranych dermatozach. Przegl. Dermatol. 103, 227–232 (2016)Search in Google Scholar

Catiau L., Traisnel J., Delval-Dubois V., Chihib N.E., Guillochon D., Nedjar-Arroume N.: Minimal antimicrobial peptidic sequence from hemoglobin alpha-chain: KYR. Peptides, 32, 633–638 (2011)10.1016/j.peptides.2010.12.01621262306Search in Google Scholar

Cirioni O., Scalise G. i wsp.: The lipopeptides Pal-Lys-Lys-NH(2) and Pal-Lys-Lys soaking alone and in combination with intraperitoneal vancomycin prevent vascular graft biofilm in a subcutaneous rat pouch model of staphylococcal infection. Peptides, 28, 1299–1303 (2007)10.1016/j.peptides.2007.03.01717537542Search in Google Scholar

Citterio L., Franzyk H., Palarasah Y., Andersen T.E., Mateiu R.V., Gram L.: Improved in vitro evaluation of novel antimicrobials: potential synergy between human plasma and antibacterial peptidomimetics, AMPs and antibiotics against human pathogenic bacteria, Res. Microbiol. 167, 72–82 (2016)10.1016/j.resmic.2015.10.00226499211Search in Google Scholar

Cochrane A.S, Findlay B., Bakhtiary A., Acedo J.Z., Rodriguez-Lopez E.M, Mercier P., Vederas J.C.: Antimicrobial lipopeptide tridecaptin A1 selectivelybinds to Gram-negative lipid II. P. Natl. Acad. Sci. USA, 113, 11561–11566 (2016)10.1073/pnas.1608623113506828927688760Search in Google Scholar

Dawgul M., Barańska-Rybak W., Greber K., Guzik Ł., Nowicki R., Łukasiak J., Kamysz W.: Aktywność przeciwbakteryjna krótkich lipopeptydów wobec klinicznych szczepów Staphylococcus aureus. Alergia Astma Immunologia, 16, 31–36 (2001)Search in Google Scholar

Dawgul M., Barańska-Rybak W., Bielińska S., Nowicki R., Kamysz W.: Wpływ peptydów przeciwdrobnoustrojowych na biofilm Candida. Alergia Astma Immunologia, 15, 220–225 (2010)Search in Google Scholar

Dawgul M., Maciejewska M., Jaskiewicz M., Karafova A., Kamysz W.: Antimicrobial peptides as potential tool to fight bacterial biofilm, Acta. Pol. Pharm. 71, 39–47 (2014)Search in Google Scholar

Eckhard L.H., Houri-Haddad Y., Sol A., Zeharia R., Shai Y., Beyth S., Domb A.J., Bachrach G., Beyth N.: Sustained release of Antibacterial Lipopeptides from Biodegradable Polymers against Pral Pathogens, Plos One, 11, e0162537 (2016)10.1371/journal.pone.0162537501583527606830Search in Google Scholar

Fenyou She, Nimmagadda A., Teng P., Su M., Zuo X.B., Cai J.F.: Helical 1:1 alpha/Sulfono-gamma-AA Heterogeneous Peptides with Antimicrobial Activity, Biomacromolecules, 17, 1854–1859 (2016)Search in Google Scholar

Ghosh C., Konai M.M., Sarkar P., Samaddar S., Haldar J.: Design simple lapidates lysines: bifurcation imparts selective antimibrobial activity. Chem. Med. Chem., 11, 2367–2371 (2016)Search in Google Scholar

Giuliani A., Rinaldi A.C.: Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches. Cell. Mol. Life Sci. 68, 2255–2266 (2011)10.1007/s00018-011-0717-321598022Search in Google Scholar

Goldberg K. Sarig H., Zakoon F., Espand R.F., Espand R.M., Mor A.: Sensitization of Gram-negative bacteria by targeting the membrane potential. Faseb J. 27, 3818–3826 (2013)Search in Google Scholar

Greber K.E., Dawgul M., Kamysz W., Sawicki W.: Cationic Net Charge and Counter Ion Type as Antimicrobial Activity Determinant Factors of Short Lipopeptides. Front. Microbiol. Doi: 10.3389/fmicb.2017.00123 (2017)10.3389/fmicb.2017.00123528535428203232Search in Google Scholar

Greber K.E., Ciura K., Belka M., Kawczak P., Nowakowska J., Baczek T., Sawicki W.: Characterization of antimicrobial and hemolytic properties of short synthetic cationic lipopeptides based on QSAR/QSTR approach, Amino acids, DOI: 10.1007/s00726-017-2530-2 (2017)10.1007/s00726-017-2530-2585217229264738Search in Google Scholar

Horn J.N., Sengillo J.D., Lin D.J., Romo T.D., Grossfield A.: Characterization of a potent antimicrobial lipopeptide via coarse-grained molecular dynamics, BBA.-Biomembranes. 1818, 212–218 (2012)10.1016/j.bbamem.2011.07.025369433821819964Search in Google Scholar

Hu Y.G., Amin M.N., Padhee S., Wang R.S.E., Qiao Q., Bai G., Li Y.Q., Mathew A., Cao C.H., Cai J.F.: Lipidated peptidomimetics with improved antimicrobial activity. ACS. Med. Chem. Lett.3, 683–686 (2012)10.1021/ml3001215402573724900530Search in Google Scholar

Hu Y.G., Li X.L., Sebti S.M., Chen J.D., Cai J.F.: Design and synthesis of AApeptides: a new class of peptide mimics. Bioorg. Med. Chem. Lett. 21, 1469–1471 (2011)Search in Google Scholar

Iyer V.: A review of stapled peptides and small molecules to inhibit protein-protein interactions in cancer. Curr. Med. Chem. 23, 3025–3043 (2016)Search in Google Scholar

The APD: The Antimicrobial Peptide Database, http://aps.unmc. edu/AP/main.php (24.02.2018)Search in Google Scholar

Jammal J., Zakoon F., Kaneti G., Goldberg K., Mor A.: Sentsitization of Gram-negative bacteria to rifampin and OAK combinations. Sci. Rep.-UK, DOI: 10.1038/srep0921610.1038/srep09216436386025782773Search in Google Scholar

Jammal J., Zaknoon F., Kaneti G., Herhkovits A.S., Mor A.: Sensitization of Gram-negative Bacilli to Host Antimicrobial Proteins, JPN. J. Infect. Dis. 215, 1599–1607 (2017)Search in Google Scholar

Janiszewska J. Naturalne peptydy przeciwdrobnoustrojowe w zastosowaniach biomedycznych. Polimery, 59, 699–707 (2014)10.14314/polimery.2014.699Search in Google Scholar

Janiszewska J., Sowinska M., Rajnisz A., Solecka J., Lacka I., Milewski S., Urbanczyk-Lipkowska Z.: Novel dendrimeric lipopeptides with antifungal activity, Bioorg. Med. Chem. Lett. 22, 1388–1393 (2012)Search in Google Scholar

Jansen R.O., Sandberg-Schaal A., Frimodt-Moller N., Nielsen H.M., Franzyk H.: End group modification: Efficient tool for improving activity of antimicrobial peptide analogues towards Gram-positive bacteria, Eur. J. Pharm. Biopharm. 95, 40–46 (2015)10.1016/j.ejpb.2015.01.01325622790Search in Google Scholar

Jaśkiewicz M., Neubauer D., Kamysz W.: Comparative Study on Antistaphylococcal Activity of Lipopeptides in Various Culture Media. Antibiotics, DOI:10.3390/antibiotics6030015 (2017)10.3390/antibiotics6030015561797928767074Search in Google Scholar

Jenner Z.B., Crittenden C.M., Gonzales M., Brodbelt J.S., Bruns K.A.: Hydrocarbon-stapled lipopeptides exhibit selective antimicrobial activity, Biopolymers, 108, e23006 (2017)10.1002/bip.2300628073163Search in Google Scholar

Jerala R.: Synthetic lipopeptides: a novel class of anti-infectives, Expert. Opin. Inv. Drug. 16, 1159–1169 (2007)Search in Google Scholar

Kamysz E., Barchiesi F. i wsp.: In vitro activity of the lipopeptide PAL-Lys-Lys-NH2, alone and in combination with antifungal agents, against clinical isolates of Candida spp. Peptides, 32, 99–103 (2011)10.1016/j.peptides.2010.10.022Search in Google Scholar

Kamysz E., Sikorska E., Dawgul M., Tyszkowski R., Kamysz W.: Influence of dimerization of lipopeptide Laur-Orn-Orn-Cys-NH2 and N-terminal peptide of human lactoferricin on biological activity. Int. J. Pept. Res. Ther. 21, 39–46 (2015)10.1007/s10989-014-9423-ySearch in Google Scholar

Kamysz W.: Projektowanie, synteza i badania peptydów przeciwdrobnoustrojowych. Akademia Medyczna. Gdańsk, 2007Search in Google Scholar

Kaur P., Li Y.Q., Cai F.J., Song L.K.: Selective membrane disruption mechanism of an antibacterial gamma-AApeptide defined by EPR spectroscopy. Biophys. J. 110, 1789–1799 (2016)Search in Google Scholar

Koh J.J., Lin S.M., Beuerman R.W., Liu S.P.: Recent advances in synthetic lipopeptides as anti-microbial agents: design and synthetic approaches, Amino acids, 49, 1653–1677 (2017)Search in Google Scholar

Kozińska A., Sitkiewicz I.:. "Nowe” i "Stare” antybiotyki – mechanizmy działania i strategie poszukiwania leków przeciwbakteryjnych. Kosmos, 66, 109–124 (2017)Search in Google Scholar

Lakshminarayanan R., Beuerman R.W. I wsp.: Branched peptide, B2088, disrupts the supramolecular organization of lipopolysaccharides and sensitizes the Gram-negative bacteria, Sci. Rep.-UK, 6, DOI: 10.1038/srep25905 (2016)10.1038/srep25905Search in Google Scholar

Laverty G., McLaughlin M., Shaw C., Gorman S.P., Gilmore B.F.: Antimicrobial Activity of Short, Synthetic Cationic Lipopeptides, Chem. Biol. Drug. Des. 75, 563–569 (2010)Search in Google Scholar

Li J., Koh J.J, Liu S., Lakshminarayanan R., Verma C.S, Beuerman R.W.: Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front. Neurosci. Doi: 10.3389/fnins.2017.00073 (2017)10.3389/fnins.2017.00073Search in Google Scholar

Li J.G., Liu S.P., Lakshminarayanan R., Bai Y., Pervushin K., Verma C., Beuerman R.W.: Molecular simulations suggest how a branched antimicrobial peptide perturbs a bacterial membrane and enhances permeability, BBA. – Biomembranes, 1828, 1112–1121 (2013)10.1016/j.bbamem.2012.12.015Search in Google Scholar

Lin D.J., Grossfield A.: Thermodynamics of antimicrobial lipopeptide binding to membranes: origins of affinity and selectivity. Biophys. J. 107, 1862–1872 (2014)Search in Google Scholar

Lohan S., Cameotra S.S., Bisht G.S.: Systematic study of non-natural short cationic lipopeptides as novel broad-spectrum antimicrobial agents. Chem. Biol. Drug. Des. 82, 557–566 (2013)Search in Google Scholar

Majerle A., Kidric J. Jerala R.: Enhancement of antibacterial and lipopolysaccharide binding activities of a human lactoferrin peptide fragment by the addition of acyl chain. J. Antimicrob. Chemoth. 51, 1159–1165 (2003)Search in Google Scholar

Mak P., Pohl J., Dubin A., Reed M.S., Bowers S.E., Fallon M.T., Shafer W.M.: The increased bactericidal activity of a fatty acid-modified synthetic antimicrobial peptide of human cathepsin G correlates with its enhanced capacity to interact with model membranes. Int. J. Antimicrob. Ag. 21, 13–19 (2003)10.1016/S0924-8579(02)00245-5Search in Google Scholar

Makovitzky A., Avrahami D., Shai Y.: Ultrashort antibacterial and antifungal lipopeptides. P. Natl. Acad. Sci. USA, 103, 15997–16002 (2006)10.1073/pnas.0606129103163511617038500Search in Google Scholar

Makovitzky A., Baram J. Shai Y.: Antimicrobial lipopolypeptides composed of palmitoyl di- and tricationic peptides: in vitro and in vivo activities, self-assembly to nanostructures and plausible mode of action. Biochemistry-US, 47, 10630–10636 (2008)10.1021/bi801167518783248Search in Google Scholar

Malina A., Shai Y.: Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of cationic biologically inactive peptide, Biochem. J. 390, 695–702 (2005)Search in Google Scholar

Mangoni M.L., Shai Y.: Short native antimicrobial peptides and engineered ultrashort lipopeptides: similarities and differences in cell specificities and modes of action, Cell Mol. Life Sci. 68, 2267–2280 (2011)10.1007/s00018-011-0718-221573781Search in Google Scholar

Migon D., Neubauer D., Kamysz W.: Hydrocarbon Stapled Antimicrobial Peptides. Protein J. DOI: 10.1007/s10930-018-9755-0 (2018)10.1007/s10930-018-9755-0584227329330644Search in Google Scholar

Min K.R., Galvis A., Williams B., Rayala R., Cudic P., Ajdic D.: Antibacterial and Antibiofilm Activities of a Novel Synthetic Cyclic Lipopeptide against Cariogenic Streptococcus mutans UA159. Antimicrob. Agents. Chemother. DOI: 10.1128/AAC.00776-17 (2017)10.1128/AAC.00776-17552765528533236Search in Google Scholar

Mirski T., Gryko R., Bartoszcze M., Bielwaska-Drózd A., Tyszkiewicz W.: Peptydy przeciwdrobnoustrojowe – nowe możliwości zwalczania infekcji u ludzi i zwierząt. Medycyna Wet. 67, 517–521 (2011)Search in Google Scholar

Mishra B., Lushnikova T., Wang G.S.: Small lipopeptides possess anti-biofilm capability comparable to daptomycin and vancomycin. RSC. Adv. 5, 59758–59769 (2015)Search in Google Scholar

Mizerska-Dudka M., Andrejko M., Kondefer-Szerszeń M.. Przeciwirusowe peptydy kationowe człowieka i owadów. Post. Mikrobiol. 50, 209–216 (2011)Search in Google Scholar

Mohanram H., Bhattacharjya S.: ‘Lollipop’-shaped helical structure of a hybrid antimicrobial peptide of temporin B – lipopolysaccharide binding motif and mapping cationic residues in antibacterial activity, BBA. – Gen. Subjects. 1860, 1362–1372 (2016)10.1016/j.bbagen.2016.03.02527015761Search in Google Scholar

Mohanram H., Bhattacharjya S.: beta-Boomerang Antimicrobial and antiendotoxic peptides: lipidation and disulfide bond effects on activity and structure. Pharmaceuticals (Basel, Switzerland),7, 482–501 (2014)10.3390/ph7040482401470424756162Search in Google Scholar

Nasompag S., Dechsiri P., Hongsing N., Phonimdaeng P., Daduang S., Klaynongsruang S., Camesano T.A., Patramanon R.: Effect of acyl chain length on therapeutic activity and mode of action of the C-X-KYR-NH2 antimicrobial lipopeptide. BBA. – Biomembranes, 1848, 2351–2364 (2015)10.1016/j.bbamem.2015.07.00426170198Search in Google Scholar

Nedjar-Arroume N., Dubois-Delval V., Adje E.Y., Traisnel J., Krier F., Mary P., Kouach M., Briand G., Guillochon D.: Bovine hemoglobin: an attractive source of antibacterial peptides. Peptides, 29, 969–977 (2008)10.1016/j.peptides.2008.01.01118342399Search in Google Scholar

Niu Y.H., Cai J.F I wsp.: Lipo-gamma-AApeptides as a new class of potent and broad-spectrum antimicrobial agents. J. Med. Chem. 55, 4003–4009 (2012)Search in Google Scholar

Omardien S., Brul S., Zaat S.A.J.: Antimicrobial Activity of Cationic Antimicrobial Peptides against Gram-Positives: Current Progress Made in Understanding the Mode of Action and the Response of Bacteria. Front. Cell. Dev. Biol. Doi: 10.3389/fcell.2016.00111 (2016)10.3389/fcell.2016.00111506385727790614Search in Google Scholar

Oren Z., Lerman J.C., Gudmundsson G.H., Agerberth B., Shai Y.: Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem. J. 341, 501–513 (1999)10.1042/bj3410501Search in Google Scholar

Padhee S., Li Y.Q., Cai J.F.: Activity of lipo-cyclic gamma-AApeptides against biofilms of Staphyloccocus epidermidisand Pseudomonas aeruginosa, Bioorg. Med. Chem. Lett. 25, 2565–2569 (2015)Search in Google Scholar

Papo N., Oren Z., Pag U., Sahl H.G., Shai Y.: The consequence of sequence alternation of an amphipathic alpha-helical antimicrobial peptide and its diastereomers. J. Biol. Chem. 277, 33913–33921 (2002)Search in Google Scholar

Radzishevsky I.S., Rotem S., Bourdetsky D., Navon-Venezia S., Carmeli Y., Mor A.: Impoved antimicrobial peptides based on acyl-lysine oligomers. Nat. Biotechnol. 25, 657–659 (2007)Search in Google Scholar

Sang P., Shi Y., Teng P., Cao A.N., Xu H., Li Q., Cai J.F.: Antimicrobial AApeptides, Curr. Top. Med. Chem. 17, 1266–1279 (2017)Search in Google Scholar

Sarig H. Livne L., Held-Kutnetsov V., Zakoon F., Ivankin A., Gidalevitz D., Mor A.: A miniature mimic of host defense peptides with systematic antibacterial efficacy. Faseb J. 24, 1904–1913 (2010)Search in Google Scholar

Shai Y., Makovitzky A., Avrahami D.: Host defense peptides and lipopeptides: mode of action and potential candidates for the treatment of bacterial and fungal infections. Curr. Protein Pept. Sci. 7, 479–486 (2006)Search in Google Scholar

Sikorska E., Dawgul M., Greber K., Ilowska E., Pogorzelska A., Kamysz W.: Self-assebly and interactions of short antimicrobial lipopeptides with membrane lipids: ITC, FTIR and molecular dynamics studies. BBA.-Biomembranes, 1838, 2625–2634 (2014)10.1016/j.bbamem.2014.06.01624978107Search in Google Scholar

Straus S.K., Hancock R.E.W.: Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. BBA.-Biomembranes, 1758, 1215–1223 (2006)10.1016/j.bbamem.2006.02.00916615993Search in Google Scholar

Teng P., Cai J.F. I wsp.: Small Antimicrobial Agents Based on Acylated Reduced Amide Scaffold, J. Med. Chem. 59, 7877–7887 (2016)Search in Google Scholar

Wang G.: Improved Methods for Classification, Prediction and Design of Antimicrobial Peptides. Method. Mol. Cell Biol. 1268, 43–66 (2015)Search in Google Scholar

Wiesner J., Vilcinskas A.: Antimicrobial peptides: the ancient arm of the human immune system. Virulence, 1, 440–464 (2010)10.4161/viru.1.5.1298321178486Search in Google Scholar

Wódz K., Brzezińska-Błaszczyk E., Katelicydyny – endogenne peptydy przeciwdrobnoustrojowe. Postępy Biochemii, 61, 93–101 (2015)Search in Google Scholar

Zdybicka-Barabas A., Stączek S., Cytryńska M.: Różnorodność peptydów przeciwdrobnoustrojowych bezkręgowców. Kosmos, 66, 563–574 (2017)Search in Google Scholar

Zhang L.J, Gallo R.L.: Antimicrobial peptides. Curr. Biol. 26, 14–19 (2016)Search in Google Scholar

Żyłowska M., Wyszyńska A., Jagusztyn-Krynicka E.K.: Defensysny – peptydy o aktywności przeciwbakteryjnej. Post. Mikrobiol. 50, 223–234 (2011)Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo