1. bookVolume 61 (2012): Edizione 1-6 (December 2012)
Dettagli della rivista
Prima pubblicazione
22 Feb 2016
Frequenza di pubblicazione
1 volta all'anno
access type Accesso libero

Estimating coancestry within open-pollinated progenies of a dioecious species: the case study of Myracrodruon urundeuva

Pubblicato online: 01 Aug 2017
Volume & Edizione: Volume 61 (2012) - Edizione 1-6 (December 2012)
Pagine: 256 - 264
Ricevuto: 20 Mar 2012
Dettagli della rivista
Prima pubblicazione
22 Feb 2016
Frequenza di pubblicazione
1 volta all'anno

Understanding the coancestry coefficient within openpollinated progenies has long been an area of interest because of the implications of coancestry on estimates of additive genetic variation, variance effective size and the number of seed trees required for seed collection for ex situ conservation, tree breeding and environmental restoration. This study compares three methods to calculate the coancestry coefficient within open-pollinated progenies of the dioecious tree species, Myracrodruon urundeuva, using six microsatellite loci. The methods compared were: i) correlated mating model (CMM) (RITLAND, 1989); ii) TWOGENER method (SMOUSE et al., 2001) to estimate the differentiation among pollen pools (TGM); and iii) HARDY et al.’s 2004 method using the estimate of coancestry from LOISELLE et al. (1995) (HLM) and from RITLAND (1996) (HRM). The data analysis was based on four data sets: two populations were composed of 12 progenies, two of 24 progenies, and all progenies consisted of 15 plants. The coancestry estimated using CMM ranged among populations from 0.145 to 0.158, using TGM it ranged from 0.153 to 0.181, using HLM from 0.153 to 0.162, and HRM from 0.144 to 0.147. To investigate the bias of the estimates of true relatedness within progenies we simulated two half-sib and two full-sib populations. The most accurate method found in the study was CMM because the estimated values presented no bias for true half- or full-sib progenies and these values were very similar to those expected (0.125 and 0.25, respectively). These results have significant implications for breeding and conservation programs because coancestry-within-progenies is a key parameter in assessing the variance effective size.


AUSTERLITZ, F. and P. S. SMOUSE (2001): Two-generation analysis of pollen flow across a landscape. II. Relation between ft, pollen dispersal and inter-female distance. Genetics 157: 851-857.10.1093/genetics/157.2.851146152611157001Search in Google Scholar

AZEVEDO, V. C. R., M. KANASHIRO, A. Y. CIAMPI and D. GRATTAPAGLIA (2007): Genetic structure and mating system of Manilkara huberi (Ducke) A. Chev., a heavily logged Amazonian timber species. Journal Heredity 98: 646-654.10.1093/jhered/esm07417873149Search in Google Scholar

BITTENCOURT, J. V. M. and A. M. SEBBENN (2008): Pollen movement within a continuous forest of wind-pollinated Araucaria angustifolia, inferred from paternity and TWOGENER analysis. Conservation Genetics 9: 855-868.10.1007/s10592-007-9411-2Search in Google Scholar

BURGESS, I. P., E. R. WILLIAMS, J. C., BELL, C. E. HARWOOD and J. V. OWEN (1996): The effect of outcrossing rate on the growth of selected families of Eucalyptus grandis. Silvae Genetica 45: 97-100.Search in Google Scholar

BUTCHER, P. A. and E. R. WILLIAMS (2002): Variation in outcrossing rates and growth in Eucalyptus camaldulensis from the Petford Region, Queensland; Evidence of outbreeding depression. Silvae Genetica 51: 6-12.Search in Google Scholar

CAETANO, S., P. SILVEIRA, R. SPICHIGER and Y. NACIRIGRAVEN (2005): Identification of microsatellite markers in a neotropical seasonally dry forest tree, Astronium urundeuva (Anacardiaceae). Molecular Ecology Notes 5: 21-23.10.1111/j.1471-8286.2004.00814.xSearch in Google Scholar

CARVALHO, P. E. R. (2003): Espécies florestais brasileiras: recomendações silviculturais, potencialidades e uso da madeira. Colombo: EMBRAPA - CNPF. 640p.Search in Google Scholar

COCKERHAM, C. C. (1969): Variance of gene frequencies. Evolution 23: 72-84.10.1111/j.1558-5646.1969.tb03496.x28562963Search in Google Scholar

COLLEVATTI, R. G., D. GRATTAPAGLIA and J. D. HAY (2001): High resolution microsatellite based analysis of the mating system allows the detection of significant biparental inbreeding in Caryocar brasiliensis, and endangered tropical tree species. Heredity 86: 60-67.10.1046/j.1365-2540.2001.00801.x11298816Search in Google Scholar

DEGEN, B., E. BANDOU and H. CARON (2004): Limited pollen dispersal and biparental inbreeding in Symphonia globulifera in French Guiana. Heredity 93: 585-591.10.1038/sj.hdy.680056015316558Search in Google Scholar

EL-KASSABY, Y. A., B. G. DUNSWORTH and J. KRAKOWASKI (2003): Genetic evaluation of alternative silvicultural systems in coastal montane forests: western hemlock and amabilis fir. Theoretical and Applied Genetics 107: 598-610.10.1007/s00122-003-1291-312750773Search in Google Scholar

FERES, J. M., A. M. SEBBENN, M. C. GUIDUGLI, M. A., MESTRINER, M. L. T. MORAES and A. L. ALZATE-MARIN (2012): Mating system parameters at hierarchical levels of fruits, individuals and populations in the Brazilian insect-pollinated tropical tree, Tabebuia roseo-alba (Bignoniaceae). Conservation Genetics 13: 393-405.10.1007/s10592-011-0292-zSearch in Google Scholar

FUCHS, E. J., J. A. LOBO and M. QUESADA (2003): Effects of forest fragmentation and flowering phonology on the reproductive success and mating patterns of the tropical dry forest tree Pachira quinata. Conservation Biology 17: 149-157.10.1046/j.1523-1739.2003.01140.xSearch in Google Scholar

GAINO, A. P. S., A. M. SILVA, M. A. MORAES, P. F. ALVES, M. L. T. MORAES, M. L. M. FREITAS and A. M. SEBBENN (2010): Understanding the effects of isolation on seed and pollen flow, spatial genetic structure and effective population size of the dioecious tropical tree species Myracrodruon urundeuva. Conservation Genetics 11: 1631-1643.10.1007/s10592-010-0046-3Search in Google Scholar

HARDY, O. and X. VEKEMANS (2002): SPAGeDI: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2: 618-620.10.1046/j.1471-8286.2002.00305.xSearch in Google Scholar

HARDY, O., S. C. GONZÁLEZ-MARTÍNEZ, B. COLAS, H. FRÉVILLE, A. MIGNOT and I. LIVERI (2004): Fine-scale genetic structure and gene dispersal in Centaurea corymbosa (Asteraceae). II. Correlated paternity within and among sibships. Genetics 168: 1601-1614.10.1534/genetics.104.027714144878715579710Search in Google Scholar

JAMES, T., S. VEGE, P. ALDRICH and J. L. HAMRICK (1998): Mating systems of three tropical dry forest tree species. Biotropica 30: 587-594.10.1111/j.1744-7429.1998.tb00098.xSearch in Google Scholar

JONES, R. C., G. E. MCKINNON, B. M. POTTS and R. E. VAILLANCOURT (2005): Genetic diversity and mating system of an endangered tree Eucalyptus morrisbyi. Australian Journal of Botany 53: 367-377.10.1071/BT04182Search in Google Scholar

KALINOWSKI, S. T., A. P. WAGNER and M. L. TAPER (2006): ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship. Molecular Ecology Notes 6: 576-579.10.1111/j.1471-8286.2006.01256.xSearch in Google Scholar

LACERDA, E. B. L., M. KANASHIRO and A. M. SEBBENN (2008): Long-pollen movement and deviation of random mating in a low-density continuous population of Hymenaea courbaril in the Brazilian Amazon. Forest Ecology and Management 40: 462-470.Search in Google Scholar

LEMES, M. R., D. GRATTAPAGLIA, J. GROGAN, J. PROCTOR and R. GRIBEL (2007): Flexible mating system in a logged population of Swietenia macrophylla King (Meliaceae): implications for the management of a threatened Neotropical tree species. Plant Ecology 192: 169-179. 10.1007/s11258-007-9322-9Search in Google Scholar

LINDGREN, D., D. G. LUIGI and P. A. JEFFERSON (1997): Status number for measuring genetic diversity. Forest Genetics 4: 69-76.Search in Google Scholar

LOISELLE, B. A., V. L. SORK, J. NASON and C. GRAHAM (1995): Spatial genetic structure of a tropical understory shrub. Psychotria officinalis (Rubiaceae). American Journal of Botany 82: 1420-1425.10.1002/j.1537-2197.1995.tb12679.xSearch in Google Scholar

LORENZI, H. (2000): Árvores brasileiras: manual de identificação e cultivo de plantas nativas do Brasil. Nova Odessa: Intituto Plantarum.Search in Google Scholar

LYNCH, M. and K. RITLAND (1999): Estimation of pairwise relatedness with molecular markers. Genetics 152: 1753-1766.10.1093/genetics/152.4.1753146071410430599Search in Google Scholar

LYNCH, M. and B. WALSH (1998): Genetics and analysis of quantitative traits. 1st Sinauer Associates, Sundeland.Search in Google Scholar

MILLAR, M. A., M. BYRNE, D. J. COATES, M. J. C. STUKELY and J. A. MCCOM (2000): Mating system studies in jarrah, Eucalyptus marginata (Myrtaceae). Australian Journal of Botany 48: 475-479.10.1071/BT98088Search in Google Scholar

MILLIGAN, B. G. (2003): Maximum-likelihood estimation of relatedness. Genetics 163: 1153-1167. 10.1093/genetics/163.3.1153146249412663552Search in Google Scholar

MORAES, M. L. T. and A. M. SEBBENN (2011): Pollen dispersal between isolated trees in the Brazilian savannah: a case study of the Neotropical tree Hymenaea stigonocarpa. Biotropica 40: 462-470.10.1111/j.1744-7429.2010.00679.xSearch in Google Scholar

MORAES, M. L. T., P. Y. KAGEYAMA and A. M. SEBBENN (2004): Correlated mating in dioecious tropical tree species, Myracrodruon urundeuva Fr. All. Forest Genetics 11: 53-59.Search in Google Scholar

MORAES, M. A., W. V. VALÉRIO FILHO, M. D. V. RESENDE, A. M. SILVA, R. O. MANOEL, M. L. M. FREITAS, M. L. T. MORAES and A. M. SEBBENN (2012): Produtividade, estabilidade e adaptabilidade em progênies de Myracrodruon urundeuva F.F. & M.F. Allemão - Anacardiaceae. Scientia Forestalis 40: 69-76.Search in Google Scholar

NAITO, Y., M. KANZAKI, H. IWATA, K. OBAYASHI, S. L. LEE, N. MUHAMMAD, T. OKUDA and Y. TSUMURA (2008): Density- dependent selfing and its effects on seed performance in a tropical canopy tree species, Shorea acuminata (Dipterocarpaceae). Forest Ecology and Management 256: 375-383.10.1016/j.foreco.2008.04.031Search in Google Scholar

NAMKOONG, G. (1966): Inbreed effects on estimation of genetic additive variance. Forest Science 12: 8-13.Search in Google Scholar

QUELLER, D. C. and K. F. GOODNIGHT (1989): Estimating relatedness using molecular markers. Evolution 43: 258-275.10.1111/j.1558-5646.1989.tb04226.x28568555Search in Google Scholar

RIBEIRO, J. H. (1989): Aroeira: durável além de uma vida. Globo Rural 5: 85-90.Search in Google Scholar

RITLAND, K. (1989): Correlated matings in the partial selfer Mimulus guttatus. Evolution 43: 848-859.10.1111/j.1558-5646.1989.tb05182.x28564194Search in Google Scholar

RITLAND, K. (1996): Estimators for pairwise relatedness and individual inbreeding coefficients. Genetics Resources 67: 175-185.10.1017/S0016672300033620Search in Google Scholar

RITLAND, K. (2000): Mark - Genetic Marker Analysis Program. University of British Columbia Versão 3.1, 2006. Site: <http://genetics.forestry.ubc.ca/ritland/programs.html>.Search in Google Scholar

RITLAND, K. (2002): Extensions of models for the estimation of mating systems using n independent loci. Heredity 88: 221-228.10.1038/sj.hdy.680002911920127Search in Google Scholar

SAMPSON, J. F. (1998): Multiple paternity in Eucalyptus rameliana (Myrtaceae). Heredity 81: 349-355. 10.1046/j.1365-2540.1998.00404.xSearch in Google Scholar

SEBBENN, A. M. (2006): Sistema de reprodução em espécies arbóreas tropicais e suas implicações para a seleção de árvores matrizes para reflorestamentos ambientais. In: HIGA, A. R. and L. D. SILVA. Pomares de sementes de espécies florestais nativas. Curitiba: FUPEF, p. 93-138.Search in Google Scholar

SILVA, M. B., M. KANASHIRO, A. Y. CIAMPI, I. THOMPSON and A. M. SEBBENN (2008): Genetic effects of selective logging and pollen gene flow in a low-density population of the dioecious tropical tree Bagassa guianensis in the Brazilian Amazon. Forest Ecology and Management 255: 1548-1558.10.1016/j.foreco.2007.11.012Search in Google Scholar

SMOUSE, P. E., R. J. DYER, R. D. WESTFALL and V. L. SORK (2001): Two-generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution 55: 260-271.10.1111/j.0014-3820.2001.tb01291.x11308084Search in Google Scholar

SOUSA, V. A., A. M. SEBBENN, H. HATTEMER and M. ZIEHE (2005): Correlated mating in populations of a dioecious Brazilian conifer, Araucaria angustifolia (Bert.) O. Ktze. Forest Genetics 12: 107-119.Search in Google Scholar

SQUILLACE, A. E. (1974): Average genetic correlations among offspring from open-pollinated forest trees. Silvae Genetica 23: 149-156.Search in Google Scholar

TAMAKI, I., S. SETSUKO and N. TOMARU (2009): Estimation of outcrossing rates at hierachical levels of fruits, individuals, populations and species in Magnolia stellata. Heredity 102: 381-388.10.1038/hdy.2008.12819142200Search in Google Scholar

WANG, J. (2002): An estimator for pairwise relatedness using molecular markers. Genetics 160: 1203-1215.10.1093/genetics/160.3.1203146200311901134Search in Google Scholar

WANG, J. (2007): Triadic IBD coefficients and applications to estimating pairwise relatedness. Genetics Resources 89: 135-153.10.1017/S001667230700879817894908Search in Google Scholar

WANG, J. (2011a): COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Molecular Ecology Resources 11: 141-145.10.1111/j.1755-0998.2010.02885.x21429111Search in Google Scholar

WANG, J. (2011b): Unbiased relatedness estimation in structured populations. Genetics 187: 887-901.10.1534/genetics.110.124438306368021212234Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo