INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Deplano A, Denis O, Poirel L, Hocquet D, Nonhoff C, Byl B, et al. Molecular characterization of an epidemic clone of panantibiotic-resistant Pseudomonas aeruginosa. J Clin Microbiol. 2005 Mar;43(3):1198-204. DOI:10.1128/JCM.43.3.1198-1204.2005.10.1128/JCM.43.3.1198-1204.2005108129215750083Search in Google Scholar

2. Bartolini A, Frasson I, Cavallaro A, Richter SN, Palù G. Comparison of phenotypic methods for the detection of carbapenem non-susceptible Enterobacteriaceae. Gut Pathog. 2014;6:13. DOI:10.1186/1757-4749-6-13.10.1186/1757-4749-6-13403258424860620Search in Google Scholar

3. Bertoncheli C de M, Hörner R. Uma revisão sobre metalo-β-lactamases. Rev Bras Ciências Farm. 2008 Dec;44(4):577-99. DOI: 10.1590/S1516-93322008000400005.10.1590/S1516-93322008000400005Search in Google Scholar

4. Crespo MP, Woodford N, Sinclair A, Kaufmann ME, Turton J, Glover J, et al. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallo-beta-lactamase, in a tertiary care center in Cali, Colombia. J Clin Microbiol. 2004 Nov;42(11):5094-101. DOI: 10.1128/JCM.42.11.5094-5101.2004.10.1128/JCM.42.11.5094-5101.200452521115528701Search in Google Scholar

5. Hall BG, Barlow M. Revised Ambler classification of β-lactamases. J Antimicrob Chemother. 2005;55(6):1050-1. DOI: 10.1093/jac/dki130.10.1093/jac/dki13015872044Search in Google Scholar

6. Marsik FJ, Nambiar S. Review of Carbapenemases and AmpC-beta lactamases. Pediatr Infect Dis J. 2011;30(12):1094-5. DOI: 10.1097/ INF.0b013e31823c0e47.10.1097/INF.0b013e31823c0e4722105420Search in Google Scholar

7. Meletis G, Exindari M, Vavatsi N, Sofianou D, Diza E. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa. Hippokratia. 2012 Oct;16(4):303-7.Search in Google Scholar

8. Cuzon G, Naas T, Villegas M-V, Correa A, Quinn JP, Nordmann P. Wide dissemination of Pseudomonas aeruginosa producing beta-lactamase blaKPC-2 gene in Colombia. Antimicrob Agents Chemother. 2011 Nov;55(11):5350-3. DOI: 10.1128/AAC.00297-11.10.1128/AAC.00297-11319502921844315Search in Google Scholar

9. Overturf GD, Carbapenemases: A Brief Review for Pediatric Infectious Disease Specialists. 2010 Jan.10.1097/INF.0b013e3181c9c11820035208Search in Google Scholar

10. Hirakata Y, Yamaguchi T, Nakano M, Izumikawa K, Mine M, Aoki S, et al. Clinical and bacteriological characteristics of IMP-type metallo-beta-lactamase- producing Pseudomonas aeruginosa. Clin Infect Dis. 2003 Jul;37(1):26-32. DOI: 10.1086/375594.10.1086/37559412830405Search in Google Scholar

11. ß-Lactamase Classification and Amino Acid Sequences for TEM, SHV and OXA Extended-Spectrum and Inhibitor Resistant Enzymes. Available from: http://www.lahey.org/studies/.Search in Google Scholar

12. Buchunde S, Mendiratta DK, Deotale V, Narang P. Comparison of disc and MIC reduction methods with polymerase chain reaction for the detection of metallo-β-lactamase in Pseudomonas aeruginosa. Indian J Med Microbiol. 2012 Jan;30(2):170-4. DOI: 10.4103/0255-0857.96683.10.4103/0255-0857.9668322664432Search in Google Scholar

13. Hansen F, Hammerum AM, Skov R, Haldorsen B, Sundsfjord A, Samuelsen O. Evaluation of the total MBL confirm kit (ROSCO) for detection of metallo-β-lactamases in Pseudomonas aeruginosa and Acinetobacter baumannii. Diagn Microbiol Infect Dis. 2014 Aug;79(4):486-8. DOI: 10.1016/j.diagmicrobio.2013.12.001.10.1016/j.diagmicrobio.2013.12.00124857168Search in Google Scholar

14. Tawfik AF, Shibl AM, Aljohi MA, Altammami MA, Al-Agamy MH. Distribution of Ambler class A, B and D β-lactamases among Pseudomonas aeruginosa isolates. Burns. 2012 Sep;38(6):855-60. DOI: 10.1016/j. burns.2012.01.005.Search in Google Scholar

15. Cardoso O, Alves AF, Leitão R. Metallo-betalactamase VIM-2 in Pseudomonas aeruginosa isolates from a cystic fibrosis patient. Int J Antimicrob Agents. 2008 Apr;31(4):375-9. DOI: 10.1016/j.ijantimicag.2007.12.006.10.1016/j.ijantimicag.2007.12.00618276121Search in Google Scholar

16. Clinical and Laboratory Standard Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement. CLSI document M100-S24. Clsi. 2014.Search in Google Scholar

17. In FOR, Diagnostic V, Only USE. Rosco Diagnostica. 2013;(98019):1-3.Search in Google Scholar

18. Etest for Antimicrobial Resistance Detection (ARD) | bioMérieux Clinical Diagnostics.Search in Google Scholar

19. Fallah F, Borhan RS, Hashemi A. Detection of bla(IMP) and bla(VIM) metallo-β-lactamases genes among Pseudomonas aeruginosa strains. Int J Burns Trauma. 2013 Jan;3(2):122-4.Search in Google Scholar

20. Oliver A, Mulet X, López-Causapé C, Juan C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat. Jan;21-22:41-59.10.1016/j.drup.2015.08.00226304792Search in Google Scholar

21. Hammoudi D, Ayoub Moubareck C, Karam Sarkis D. How to detect carbapenemase producers? A literature review of phenotypic and molecular methods. J Microbiol Methods. Elsevier B.V.; 2014;107:106-18.Search in Google Scholar

22. Cabot G, Ocampo-Sosa AA, Tubau F, Macia MD, Rodríguez C, Moya B, et al. Overexpression of AmpC and efflux pumps in Pseudomonas aeruginosa isolates from bloodstream infections: prevalence and impact on resistance in a Spanish multicenter study. Antimicrob Agents Chemother. 2011 May;55(5):1906-11. DOI: 10.1128/AAC.01645-10.10.1128/AAC.01645-10308823821357294Search in Google Scholar

23. Franco MRG, Caiaffa-Filho HH, Burattini MN, Rossi F. Metallo-beta-lactamases among imipenem-resistant Pseudomonas aeruginosa in a Brazilian university hospital. Clinics (Sao Paulo). 2010 Jan;65(9):825-9. DOI: 10.1590/S1807-59322010000900002.10.1590/S1807-59322010000900002295473121049207Search in Google Scholar

24. Zhao W-H, Hu Z-Q. Epidemiology and genetics of VIM-type metallo-β-lactamases in Gram-negative bacilli. Future Microbiol. Future Medicine Ltd London, UK; 2011 Mar;6(3):317-33.10.2217/fmb.11.1321449842Search in Google Scholar

25. Wang M, Borris L, Aarestrup FM, Hasman H. Identification of a Pseudomonas aeruginosa co-producing NDM-1, VIM-5 and VIM-6 metallo-β-lactamases in Denmark using whole-genome sequencing. Int J Antimicrob Agents. 2015 Mar;45(3):324-5. DOI: 10.1016/j.ijantimicag.2014.11.004.10.1016/j.ijantimicag.2014.11.00425542060Search in Google Scholar

26. Khosravi Y, Loke MF, Chua EG, Tay ST, Vadivelu J. Phenotypic detection of metallo-β-lactamase in imipenem-resistant Pseudomonas aeruginosa. ScientificWorldJournal. 2012 Jan;2012:654939.10.1100/2012/654939338559922792048Search in Google Scholar

27. Dolara P, Arrigucci S, Cassetta MI, Fallani S, Novelli A. Inhibitory activity of diluted wine on bacterial growth: The secret of water purification in antiquity. Int J Antimicrob Agents. 2005;26:338-40. DOI: 10.1016/j. ijantimicag.2005.07.001.Search in Google Scholar

28. Craciunas C, Butiuc-Keul A, Flonta M, Brad A, Sigarteu M. Application of molecular techniques to the study of Pseudomonas aeruginosa clinical isolate in Cluj-Napoca, Romania. Analele Univ. din Oradea - Fascicula Biologie. 2010 Jan 1; 17(2):243-247. Search in Google Scholar

29. Mereuţă AI, Tuchiluş C, Bădescu AC, Iancu LS. Metallo-beta-lactamase-mediated resistance among carbapenem-resistant Pseudomonas aeruginosa clinical isolates. Rev Med Chir Soc Med Nat Iasi. 2011 Jan;115(4):1208-13.Search in Google Scholar

30. Mereuţă AI, Bădescu AC, Dorneanu OS, Iancu LS, Tuchiluş CG. Spread of VIM-2 metallo-beta-lactamase in Pseudomonas aeruginosa and Acinetobacter baumannii clinical isolates from Iaşi, Romania. Rom Rev Lab Med. 2013 Dec;21(4):423-30. DOI: 10.2478/rrlm-2013-0035.10.2478/rrlm-2013-0035Search in Google Scholar

31. Gheorghe I, Czobor I, Chifiriuc MC, Borcan E, Ghiţă C, Banu O, et al. Molecular screening of carbapenemase-producing Gram-negative strains in Romanian intensive care units during a one year survey. J Med Microbiol. Microbiology Society; 2014 Oct;63(Pt 10):1303-10.10.1099/jmm.0.074039-025060972Search in Google Scholar

eISSN:
2284-5623
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Molecular Biology, Biochemistry, Human Biology, Microbiology and Virology