1. bookVolume 24 (2016): Edizione 2 (June 2016)
Dettagli della rivista
License
Formato
Rivista
eISSN
2284-5623
Prima pubblicazione
08 Aug 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
access type Accesso libero

Exposure of Human Endothelial Progenitors to Sevoflurane Improves Their Survival Abilities

Pubblicato online: 28 Jun 2016
Volume & Edizione: Volume 24 (2016) - Edizione 2 (June 2016)
Pagine: 177 - 186
Ricevuto: 23 Dec 2015
Accettato: 03 May 2016
Dettagli della rivista
License
Formato
Rivista
eISSN
2284-5623
Prima pubblicazione
08 Aug 2013
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Abstract

Endothelial progenitor cells (EPCs) have prominent roles in vessel and tissue repair; however, their regenerative efficacy is diminished due to the poor survival in the hostile microenvironment of the injured organs. Recent data suggest a promising potential of volatile anesthetics for improving stem cell biology. Thus, we hypothesized that exposure to sevoflurane could stimulate growth and viability of cultured EPCs.

Total mononuclear cells were isolated from human umbilical cord blood by gradient centrifugation. After five days in culture, the cells were exposed for one or two hours to sevoflurane 2% or 4% in air/5% CO2, or only to air/5% CO2 (sham control) in a sealed modular chamber. 24 or 48 hours post-exposure, viability, proliferation and apoptosis were assessed using lactate dehydrogenase (LDH) leakage assay, a methyl tetrazolium salt (MTS) assay and FITC-annexin V/ propidium iodide (PI) staining, respectively.

LDH leakage was discretely lowered, whereas the levels of formazan were significantly increased (p < 0.05 for 1 h incubation with 4% sevoflurane at 24 hrs post-exposure, and with 2% sevoflurane at 48 h post-exposure) in the preconditioned cultures, proving no cytotoxic effects and increased proliferation in treated cells versus control samples. Early (p < 0.05) and late apoptosis (p < 0.05 only for 2% sevoflurane) were diminished following the procedure.

Thus, the commonly used sevoflurane anesthetic has protective effects on viability and proliferation of human early endothelial progenitor cells in vitro, suggesting a promising potential of anesthetic preconditioning for improving the regeneration of ischemic tissues.

Keywords

1. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A. 2001;98(18):10344-9. DOI: 10.1073/pnas.181177898.10.1073/pnas.1811778985696311504914Search in Google Scholar

2. Murohara T, Ikeda H, Duan J, Shintani S, Sasaki KI, Eguchi H, et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest. 2000;105(11):1527-36. DOI: 10.1172/JCI8296.10.1172/JCI829630084710841511Search in Google Scholar

3. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A. 2000;97(7):3422-7. DOI: 10.1073/pnas.97.7.3422.10.1073/pnas.97.7.34221625510725398Search in Google Scholar

4. Losordo DW, Henry TD, Davidson C, Sup Lee J, Costa MA, Bass T, et al. Intramyocardial, Autologous CD34+ Cell Therapy for Refractory Angina / Novelty and Significance. Circ Res. 2011;109(4):428-36. DOI: 10.1161/CIRCRESAHA.111.245993.10.1161/CIRCRESAHA.111.245993319057521737787Search in Google Scholar

5. Doyle B, Sorajja P, Hynes B, Kumar AHS, Araoz P a, Stalboerger PG, et al. Progenitor cell therapy in a porcine acute myocardial infarction model induces cardiac hypertrophy, mediated by paracrine secretion of cardiotrophic factors including TGFbeta1. Stem Cells Dev. 2008;17(5):941-51. DOI: 10.1089/scd.2007.0214.10.1089/scd.2007.0214318971218564032Search in Google Scholar

6. Jujo K, Ii M, Losordo DW. Endothelial progenitor cells in neovascularization of infarcted myocardium. J Mol Cell Cardiol. 2008;45(4):530-44. DOI: 10.1016/j. yjmcc.2008.08.003.Search in Google Scholar

7. Freyman T, Polin G, Osman H, Crary J, Lu M, Cheng L, et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J. 2006;27(9):1114-22. DOI: 10.1093/eurheartj/ehi818.10.1093/eurheartj/ehi81816510464Search in Google Scholar

8. Herrmann JL, Abarbanell AM, Weil BR, Manukyan MC, Poynter J a, Brewster BJ, et al. Optimizing stem cell function for the treatment of ischemic heart disease. J Surg Res. 2011;166(1):138-45. DOI: 10.1016/j.jss.2010.05.057.10.1016/j.jss.2010.05.057300875920828719Search in Google Scholar

9. Landoni G, Bignami E, Oliviero F, Zangrillo A. Halogenated anaesthetics and cardiac protection in cardiac and non-cardiac anaesthesia. Ann Card Anaesth. 2009;12(1):4-9. DOI: 10.4103/0971-9784.4500610.4103/0971-9784.4500619136748Search in Google Scholar

10. Frässdorf J, De Hert S, Schlack W. Anaesthesia and myocardial ischaemia/reperfusion injury. Br J Anaesth. 2009;103(1):89-98. DOI: 10.1093/bja/aep141.10.1093/bja/aep14119502287Search in Google Scholar

11. Stadnicka A, Marinovic J, Ljubkovic M, Bienengraeber MW, Bosnjak ZJ. Volatile anesthetic-induced cardiac preconditioning. J Anesth. 2007;21(2):212-9. DOI: 10.1007/s00540-006-0486-6.10.1007/s00540-006-0486-617458651Search in Google Scholar

12. Popescu M, Munteanu A, Isvoranu G, Suciu L, Pavel B, Marinescu B, et al. Dynamics of endothelial progenitor cells following sevoflurane preconditioning. Roum Arch Microbiol Immunol. 2011 Jul-Sep;70(3):109-13.Search in Google Scholar

13. Lucchinetti E, Zeisberger SM, Baruscotti I, Wacker J, Feng J, Zaugg K, et al. Stem cell-like human endothelial progenitors show enhanced colony-forming capacity after brief sevoflurane exposure: preconditioning of angiogenic cells by volatile anesthetics. Anesth Analg. 2009;109(4):1117-26. DOI: 10.1213/ ANE.0b013e3181b5a277.10.1213/ANE.0b013e3181b5a27719762739Search in Google Scholar

14. Sun X, Fang B, Zhao X, Zhang G, Ma H. Preconditioning of mesenchymal stem cells by sevoflurane to improve their therapeutic potential. PLoS One. 2014;9(3):e90667. DOI: 10.1371/journal. pone.0090667.Search in Google Scholar

15. Vasa M, Fichtlscherer S, Aicher a, Adler K, Urbich C, Martin H, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89(1):E1-7. DOI: 10.1161/hh1301.093953.10.1161/hh1301.09395311440984Search in Google Scholar

16. Hibbert B, Ma X, Pourdjabbar A, Simard T, Rayner K, Sun J, et al. Pre-procedural atorvastatin mobilizes endothelial progenitor cells: clues to the salutary effects of statins on healing of stented human arteries. PLoS One. 2011;6(1):e16413. DOI: 10.1371/journal. pone.0016413.Search in Google Scholar

17. Zentilin L, Tafuro S, Zacchigna S, Arsic N, Pattarini L, Sinigaglia M, et al. Bone marrow mononuclear cells are recruited to the sites of VEGF-induced neovascularization but are not incorporated into the newly formed vessels. Blood. 2006;107(9):3546-54. DOI: 10.1182/ blood-2005-08-3215.10.1182/blood-2005-08-321516391016Search in Google Scholar

18. Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Yung S, et al. VEGF-induced adult neovascularization: Recruitment, retention, and role of accessory cells. Cell. 2006;124(1):175-89. DOI: 10.1016/j. cell.2005.10.036.Search in Google Scholar

19. Thum T, Tsikas D, Stein S, Schultheiss M, Eigenthaler M, Anker SD, et al. Suppression of endothelial progenitor cells in human coronary artery disease by the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine. J Am Coll Cardiol. 2005;46(9):1693-701. DOI: 10.1016/j.jacc.2005.04.066.10.1016/j.jacc.2005.04.06616256870Search in Google Scholar

20. Hibbert B, Ma X, Pourdjabbar A, Holm E, Rayner K, Chen Y-X, et al. Inhibition of endothelial progenitor cell glycogen synthase kinase-3beta results in attenuated neointima formation and enhanced re-endothelialization after arterial injury. Cardiovasc Res. 2009;83(1):16-23. DOI: 10.1093/cvr/cvp156.10.1093/cvr/cvp15619454488Search in Google Scholar

21. Hirschi KK, Ingram D a., Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2008;28(9):1584-95. DOI: 10.1161/ATVBAHA.107.155960.10.1161/ATVBAHA.107.155960524481318669889Search in Google Scholar

22. Bedirli N, Bagriacik EU, Emmez H, Yilmaz G, Unal Y, Ozkose Z. Sevoflurane and Isoflurane Preconditioning Provides Neuroprotection by Inhibition of Apoptosis-related mRNA Expression in a Rat Model of Focal Cerebral Ischemia. J Neurosurg Anesthesiol. 2012;24(4):336-44. DOI: 10.1097/ ANA.0b013e318266791e.10.1097/ANA.0b013e318266791e22871953Search in Google Scholar

23. Codaccioni J-L, Velly LJ, Moubarik C, Bruder NJ, Pisano PS, Guillet B a. Sevoflurane preconditioning against focal cerebral ischemia: inhibition of apoptosis in the face of transient improvement of neurological outcome. Anesthesiology. 2009;110(6):1271-8. DOI: 10.1097/ALN.0b013e3181a1fe68.10.1097/ALN.0b013e3181a1fe6819417596Search in Google Scholar

24. Liu Y, Shi L, Liu C, Zhu G, Li H, Zhao H, et al. Effect of combination therapy of propofol and sevoflurane on MAP2K3 level and myocardial apoptosis induced by ischemia-reperfusion in rats. Int J Clin Exp Med. 2015 Apr 15;8(4):6427-35.Search in Google Scholar

25. Zhang J, Wang C, Yu S, Luo Z, Chen Y, Liu Q, et al. Sevoflurane Postconditioning Protects Rat Hearts against Ischemia-Reperfusion Injury via the Activation of PI3K/AKT/mTOR Signaling. Sci Rep. 2014;4:7317. DOI: 10.1038/srep07317.10.1038/srep07317425518225471136Search in Google Scholar

26. Zhang YL, Yao YT, Fang NX, Zhou CH, Gong JS, Li LH. Restoration of autophagic flux in myocardial tissues is required for cardioprotection of sevoflurane postconditioning in rats. Acta Pharmacol Sin. 2014 Jun;35(6):758-69. DOI: 10.1038/aps.2014.20.10.1038/aps.2014.20408639324793309Search in Google Scholar

27. Theus MH, Wei L, Cui L, Francis K, Hu X, Keogh C, et al. In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Experimental Neurology. 2008. p. 656-70. DOI: 10.1016/j.expneurol.2007.12.020.10.1016/j.expneurol.2007.12.02018279854Search in Google Scholar

28. Hu X, Yu SP, Fraser JL, Lu Z, Ogle ME, Wang J-A, et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg [Internet]. 2008;135(4):799-808. DOI: 10.1016/j.jtcvs.2007.07.071.10.1016/j.jtcvs.2007.07.07118374759Search in Google Scholar

29. Akita T, Murohara T, Ikeda H, Sasaki K-I, Shimada T, Egami K, et al. Hypoxic preconditioning augments efficacy of human endothelial progenitor cells for therapeutic neovascularization. Lab Invest. 2003;83(1):65-73. DOI: 10.1097/01.LAB.0000050761.67879.E4.10.1097/01.LAB.0000050761.67879.E412533687Search in Google Scholar

30. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, et al. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation. 2002;106(22):2781-6. DOI: 10.1161/01.CIR.0000039526.42991.93.10.1161/01.CIR.0000039526.42991.93Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo