Accesso libero

Combined Effects of 50 Hz Electromagnetic Field and SiO2 Nanoparticles on Oxidative Stress in Plant’s Gametic Cells / Zemfrekvences (50 Hz) Elekromagnētiskā Lauka Un SiO2 Nanodaļiņu Kombinētā Ietekme Uz Augu Gametisko Šūnu Oksidatīvo Stresu

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Ball, P. (2002). Natural strategies for the molecular engineer. Nanotechnology, 13, 15-28.10.1088/0957-4484/13/5/201Search in Google Scholar

Bargmann, B. O. R., Birnbaum, K. D. (2009). Positive fluorescent selection permits preside, rapid and in-depth overexpression analysis in plant protoplasts. Plant Physiol., 149, 1231-1239.10.1104/pp.108.133975264941419168642Search in Google Scholar

Barnabįs, B. (2003). Protocol for producing doubled haploid plants from anthers culture of wheat Triticum aestivum L.). In: Maluszymski, M., Kasha, K. J., Forster, B. P., Szarejko, I. (eds.). Doubled Haploid Production in Crop Plants. Kluwer Academic Publishers, Dordrecht, pp. 65-70.)10.1007/978-94-017-1293-4_11Search in Google Scholar

Campos-Ramos, A., Aragon-Pina, A., Alastuey, A., Galindo-Estrada, I., Querol, X. (2011). Levels, compositions and source apportionment of rural background PM10 in western Mexico (State of Colima). Atmosph. Poll. Res., 2, 409-417.10.5094/APR.2011.046Search in Google Scholar

Carter, A. D., Bonyadi, R., Miriam, L., Gifford, (2013). The use of fluorescence- activated cell sorting in studying plant development and environmental responses. J. Dev. Biol., 57, 545-552.10.1387/ijdb.130195mg24166437Search in Google Scholar

Cui, Y., Ge, Z., Rizak, J. D., Zhai, C., Zhou, Z., Gong, S., Che, Y. (2012). Deficits in water maze performance and oxidative stress in the hippocampus and striatum induced by extremely low frequency magnetic field exposure. PLoS One, 7, e32196.10.1371/journal.pone.0032196334307722570685Search in Google Scholar

Cvetkovic, D., Cosic, I. (2009). Alterations of human electroencephalographic activity caused by multiple extremely low frequency magnetic field exposures. Med. Biol. Eng. Comput., 47, 1063-1073.10.1007/s11517-009-0525-119707808Search in Google Scholar

Deligiannakis, Y., Sotiriou, G. A., Pratsinis, S. E. (2012). Antioxidant and antiradical SiO2 nanoparticles covalently funtionalized with gallic acid. ASC Apl. Mater. Interfases, 6609-6617.10.1021/am301751s23121088Search in Google Scholar

Dimkpa, C. O., McLean, J. E., Latta, D .E., Manangó, E., Britt, D. W., Johnson, W. P., Boyanov, M. I., Anderson, A. J. (2012). CuO and ZnO nanoparticles; phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J. Nanopart. Res., 14 (9), 1-15.10.1007/s11051-012-1125-9Search in Google Scholar

Djaković, T., Jovanoviã, Z., (2003). The role of cell wall peroxidase in the inhibition of leaf and fruit growth. Bulg. J. Plant Physiol. Special Issue, 264-272.Search in Google Scholar

Dožel, J., Greilhuber, J., Suda, J., (2007). Flow cytometry with plants: An overview. In: Doležel, J., Greilhuber, J., Suda, J. (eds.). Flow Cytometry With Plant Cells. WILEY-VCH Verlag, GmbH&Co, KGaA, pp. 41-65.Search in Google Scholar

Eom, H.-J., Choi, J. (2011). SiO2 nanoparticles induced cytotoxity by oxidative stress in human bronchial epithelial cell, Beas-2b. Available at: http://dx.dol.org/10.5620/eht.2011.26.e201013.Search in Google Scholar

Espinosa, J. M., Liberti, M., Lagroye, I., Veyret, B. (2006). Exposure to AC and DC magnetic fields induces changes in 5-HT1B receptor binding parameters in rat brain membranes. Bioelectromagnetics, 27, 414-422.10.1002/bem.2022516607621Search in Google Scholar

Jacquard, C., Nolin, F., Hécart, C., Grauda, D., Rashal, I., Dhondt-Cordelier, S., Sangwan, R. S., Devaux, P., Mazeyrat-Gourbeyre, F., Clément, C. (2009). Microspore embryogenesis and programmed cell death in barley: Effects of copper on albinism in recalcitrant cultivars. Plant Cell Rep., 28, 1329-1339.10.1007/s00299-009-0733-z19529940Search in Google Scholar

Hoecke, K. V., Quik, J. T. K., Mankiewicz-Boczek, J., Schamphelaere, K. A. C. D., Elsaesser, A., Meeren, P. V. der, Barnes, C., Howard, C. V., Meent,D. V. D., Rydzynski, K., Dawson, K. A., Salvati, A., Lesniak, A., Silversmit, G., Samber, B. D., Vincze, L., Janssen, C. R. (2009). Fate and Effects of CeO2 Nanoparticles in aquatic ecotoxicity tests. Environ. Sci. Technol., 43 (12), 4537-4546.10.1021/es900244419603674Search in Google Scholar

Galbraith, D.W. (2010). Flow cytometry and fluorescence-activated cell sorting in plants: The past, present, and future. Biomédica, 30, 65-70.10.7705/biomedica.v30i0.824Search in Google Scholar

Grauda, D., Miķelsone, A., Ïisina, N., Þagata, K., Ornicāns, R., Fokina, O., Lapiņa, L., Rashal, I. (2014). Anther culture effectiveness in producing doubled haploids of cereals. Proc. Latvian Acad. Sci. Section B, 68 (3/4), 142-147.Search in Google Scholar

Kalteh, M., Zarrin, T. A., Shahram, A., Maryam, M. A., Alireza, F. N. (2014). Effect of silica nanoparticles on Basil (Ocimum basili-cum) under salinity stress. J. Chem. Health Risks, 4 (3), 49-55.Search in Google Scholar

Kan, A. T., Tomson, M. B. (1999). Ground water transport of hydrophobic organic compounds in the presence of dissolved organic matter. Environ. Toxicol. Chem., 9, 253-263.10.1002/etc.5620090302Search in Google Scholar

Karim, Z., Adnan, R., Ansari, M. S., (2012). Low concentration of silver nanoparticles not only enhances the activity of horseradish peroxidase but alter the structure also. PLoS ONE, 7 (7); e41422.10.1371/journal.pone.0041422340720722848490Search in Google Scholar

Kasha, K. J., Simon, E., Oro, R., Shim, Y. S., (2003). Barley isolated microspore culture protocol. In: Maluszynski, M., Kasha, K. J., Forster, B. P., Szarejko, I. (eds.). Doubled Haploid Production in Crop Plants. A. Manual. Kluwer Acad. Publ., Dordrecht, Boston, London, pp. 43-47.10.1007/978-94-017-1293-4_7Search in Google Scholar

Kimura, H., (2005). Histone dynamics in living cells revealed by photobleaching. DNA Repair (Amst.), 4, 939-950.10.1016/j.dnarep.2005.04.01215905138Search in Google Scholar

Kokina, I., Sļedevskis, Ç., Gerbreders, V., Grauda, D., Jermaļonoka, M., Valaine, K., Gavarāne I., Pigiņka I., Filipoviès M., Rashal I. (2013). Reaction of flax (Linum usitatissimum L.) calli culture to supplement of mediumby carbon nanoparticles. Proc. Latvian Acad. Sci. Section B, 66 (415), 220-209.Search in Google Scholar

Lin W., Huang Y., Zhou X.-D., Ma, Y. (2006). In vitro toxity of silica nanoparticles in human lang cancer cells. Tox. Appl. Pharm., 217, 252-259.10.1016/j.taap.2006.10.00417112558Search in Google Scholar

Lin, D., Xing, B., (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Poll., 150, 243-250.10.1016/j.envpol.2007.01.01617374428Search in Google Scholar

Ma, X., Geisler-Lee, J., Deng, Y., Kolmakov, A., (2010), Interaction between engineered nananoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Environ., 408, 3053-3061.Search in Google Scholar

Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant., 15, 473-497.10.1111/j.1399-3054.1962.tb08052.xSearch in Google Scholar

Martinez, M. M., Reif, R. D., Pappas, D. (2010). Early detection of apoptosis in living cells by fluorescence correlation spectroscopy. Anal. Bioanal. Chem., 396, 1177-1185.10.1007/s00216-009-3298-3Search in Google Scholar

Nabais, C., Feritas, H., Hagemeyer, J. (1999). Dendroanalysis: A tool for biomonitoring environmental pollution. Sci. Total Environ., 232 (1-2), 33-37.10.1016/S0048-9697(99)00107-2Search in Google Scholar

Nawrocka, H., Poniedzialek, B., Jaroszyk, F., Wiktorowicz, K. (2006). Effects of low intensity magnetic fields and red light on respiratory burst of neutrophils. Pol. J. Environ. Stud., 15 (4), 28-30.Search in Google Scholar

Neumann, M., Gabel, D., (2002). Simple method for reduction of autofluorescence in fluorescence microscopy. J. Histochem. Cytochem., 50 (3), 437-439.10.1177/002215540205000315Search in Google Scholar

Noda, Y., Mori, A., Liburdy, R. P., Packer, L. (2000). Magnetic fields and lipoic acid influence the respiratory burst in activated rat peritoneal neutrophils. Pathophysiology, 7, 137-141.10.1016/S0928-4680(00)00041-9Search in Google Scholar

Nowack B., Bucheli T. D. (2007). Occurrence, behavior and effects of nanopaecicles in the environment. Environ. Poll., 150, 5-22.10.1016/j.envpol.2007.06.006Search in Google Scholar

Piancentini, M. P., Piatti, E., Fraternale, D., Ricci, D., Albertini, M. C., Accorsi, A. (2004). Phospholipase C-dependent phosphoinositide breakdown induced by ELF-EMF in Paganum harmala calli. Biochimie, 86 (4-5), 343-349.10.1016/j.biochi.2004.02.001Search in Google Scholar

Reijnders, L. (2012). Hazards of TiO2 and amorphous SiO2 nanoparticles. In: Toxic Effects of Nanomaterials. Kahan, H. A, Arif, I. A. (eds.). Bentham Science Publishers, pp. 85-96.10.2174/978160805283711201010085Search in Google Scholar

Roy, S., Noda, Y., Eckert, V., Traber, M. G., Mori, A., Liburdy, R., Packer, L. (1995). The phorbol 12-myristate 13-acetate (PMA)-induced oxidative burst in rat peritoneal neutrophils is increased by a 0.1mT (60 Hz) magnetic field. FEBS Lett., 376,164-166.10.1016/0014-5793(95)01266-XSearch in Google Scholar

Siddiqui, M. H., Al-Whaibi M. H., Firoz M., Al-Khaishany, M. Y. (2015). Role of nanoparticles in plants. In: Nanotechnology and Plant Sciences. Siddiqui, M. H., Al-Whaibi M. H., Firoz (eds.). Springer International Publishing AG, Switzerland, pp. 19-36.10.1007/978-3-319-14502-0_2Search in Google Scholar

Simkó, M. (2007). Cell type specific redox status is responsible for diverse electromagnetic field effects. Curr. Med. Chem., 14 (10), 1141-1152.10.2174/09298670778036283517456027Search in Google Scholar

Shabrangi, A., Majd, A., Sheidai, M., Nabyouni, M., Dorranian D. (2010). Comparing effects of extremely low frequency electromagnetic fields on the biomass weight of C3 and C4 plants in early vegetative growth. In: Electromagnetics Research Symposium Proceedings, Cambridge, USA, July 5-8, 2010. Cambridge, pp. 593-598.Search in Google Scholar

Van Hoecke, K., De Schamphelaere, K. A. C., Vander Meeren, P., Licas, S., Janssen, C. R., (2008). Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: Importance of surface area. Environ. Toxicol. Chem., 27, 410-420.Search in Google Scholar

Vigneswaran, N., Koh, S., Gillenwater, A., (2009). Incidental detection of an occult oral malignancy with autofluorescence imaging: A case report. Head Neck Oncol., 1 (37), available at: www.headandneckoncology.org/conten/1/1/37.Search in Google Scholar

Veliu, A., Syla, A., (2008). Air pollution with particulate matter and heavy metals of Kosova thermal power plant. J. Int. Environ. Appl. Sci., 3 (4), 280-287.Search in Google Scholar

Wang, J., Pui, D. Y. H., (2011). Characterization, exposure measurement and control for nanoscale particles in workplaces and on the road. J. Phys. Conference Series, 304 (012008), 1-14.10.1088/1742-6596/304/1/012008Search in Google Scholar

Wei, C., Zhang, Y., Guo, J., Han, B., Yang, X., Yuan, J. (2010). Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. J. Environ. Sci. (China), 22 (1), 155-60.10.1016/S1001-0742(09)60087-5Search in Google Scholar

Yilmaz, S., Zengin, M. (2004). Monitoring environmental pollution in Erzurum by chemical analysis of Scott pine (Pinus sylvestris L.) needles. Environ. Int., 29, 1041-1047.10.1016/S0160-4120(03)00097-7Search in Google Scholar

You, M. K., Lim, S.-H., Kim, M.-J., Jeong, Y.S., Lee, M.-G., Ha, S.-H., (2015). Improvement of the fluorescence intensity during a flow cytometric analysis for rice protoplasts by localization of a green fluorescent protein into chloroplasts. Int. J. Mol. Sci., 16, 788-804.Search in Google Scholar

eISSN:
1407-009X
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
General Interest, Mathematics, General Mathematics