Accesso libero

Design, preparation and properties of novel flame retardant thermosetting vinyl ester copolymers based on castor oil and industrial dipentene

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Raquez, J.M., Deleglise, M., Lacrampe, M.F. & Krawczak, P. (2010). Thermosetting (bio) materials derived from renewable resources: a critical review. Prog. Polym. Sci. 35, 487–509. DOI: 10.1016/j.progpolymsci.2010.01.001.10.1016/j.progpolymsci.2010.01.001Open DOISearch in Google Scholar

2. Yousefi, A., Lafleur, P.G. & Gauvinm R. (1997). Kinetic studies of thermoset cure reactions: a review. Polym. Comp.18, 157–168. DOI: 10.1002/pc.10270.10.1002/pc.10270Open DOISearch in Google Scholar

3. Sultania, M., Yadaw, S.B., Rai, J.S.P. & Srivastava, D. (2010). Laminates based on vinyl ester resin and glass fabric: A study on the thermal, mechanical and morphological characteristics. Mater. Sci. Eng. A. 527, 4560–4570. DOI: 10.1016/j.msea.2010.04.038.10.1016/j.msea.2010.04.038Open DOISearch in Google Scholar

4. Boyard, N., Vayer, M., Sinturel, C., Erre, R. & Levitz, P. (2005). Study of the porous network developed during curing of thermoset blends containing low molar weight saturated polyester. Polymer. 46, 661–669. DOI: 10.1016/j.polymer.2004.11.094.10.1016/j.polymer.2004.11.094Open DOISearch in Google Scholar

5. Li, S., Yang, X., Huang, K., Li, M. & Xia, J. (2014). Design, preparation and properties of novel renewable UV-curable copolymers based on cardanol and dimer fatty acids. Prog. Org. Coat. 77, 388–394. DOI: 10.1016/j.porgcoat.2013.11.011.10.1016/j.porgcoat.2013.11.011Open DOISearch in Google Scholar

6. Yang, X., Li, S., Xia, J., Song, J., Huang, K. & Li, M. (2015). Novel renewable resource-based UV-curable copolymers derived from myrcene and tung oil: preparation, characterization and properties. Ind. Crop. Prod. 63, 17–25. DOI: 10.1016/j.indcrop.2014.10.024.10.1016/j.indcrop.2014.10.024Open DOISearch in Google Scholar

7. Benmokrane, B., Ali, A.H., Mohamed, H.M., EISafty, A. & Manalo, A. (2017). Laboratory assessment and durability performance of vinyl-ester, polyester, and epoxy glass-FRP bars for concrete structures. Compos. Part. B. Eng. DOI: 10.1016/j.compositesb.2017.02.002.10.1016/j.compositesb.2017.02.002Open DOISearch in Google Scholar

8. Afshar, A. Liao, H.T., Chiang, F.P. & Korach, C.S. (2016). Time-dependent changes in mechanical properties of carbon fiber vinyl ester composites exposed to marine environments. Compos. Struct. 144, 80–85. DOI: 10.1016/j.compstruct.2016.02.053.10.1016/j.compstruct.2016.02.053Search in Google Scholar

9. Can, E., Kinaci, E. & Palmese, G.R. (2015). Preparation and characterization of novel vinyl ester formulations derived from cardanol. Eur. Polym. J. 72, 129–147. DOI: 10.1016/j.eurpolymj.2015.09.010.10.1016/j.eurpolymj.2015.09.010Open DOISearch in Google Scholar

10. Sultania, M., Rai, J.S.P. & Srivastava, D. (2009). Synthesis and curing of cardanol-based vinyl ester resins for applications in surface coatings-I. Paint. India. 9, 89–108.Search in Google Scholar

11. Ummartyotin, S. & Pechyen, C. (2016). Strategies for development and implementation of bio-based materials as effective renewable resources of energy: A comprehensive review on adsorbent technology. Renew. Sust. Energ. Rev. 62, 654–664. DOI: 10.1016/j.rser.2016.04.066.10.1016/j.rser.2016.04.066Open DOISearch in Google Scholar

12. Kummerer, K. (2007). Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green. Chem. 9, 899–907. DOI: 10.1039/B618298B.10.1039/B618298Open DOISearch in Google Scholar

13. Chiari, L. & Zecca, A. (2011). Constraints of fossil fules depletion on global warming projections. Energy. Policy. 39, 5026–5034. DOI: 10.1016/j.enpol.2011.06.011.10.1016/j.enpol.2011.06.011Open DOISearch in Google Scholar

14. Do, H., Park, J.H. & Kim, H.J. (2008). UV-curing behavior and adhesion performance of polumeric photoinitiators blended with hydrogenated rosin epoxy methacrylate for UV-crosslinkable acrylic pressure sensitive adhesives. Eur. Polym. J. 44, 3871–3882. DOI: 10.1016/j.eurpolymj.2008.07.046.10.1016/j.eurpolymj.2008.07.046Open DOISearch in Google Scholar

15. Gobin, M., Loulergue, P., Audic, J.L. & Lemiegre, L. (2015). Synthesis and characterization of bio-based polyester materials from vegetable oil and short to long chain dicarboxylic acids. Ind. Crop. Prod. 70, 213–220. DOI: 10.1016/j.indcrop.2015.03.041.10.1016/j.indcrop.2015.03.041Open DOISearch in Google Scholar

16. Konwar, U., Karak, N. & Mandal, M. (2010). Vegetable oil based highly branched polyester/clay silver nanocomposites as antimicrobial surface coating materials. Prog. Org. Coat. 68, 265–273. DOI: 10.1016/j.porgcoat.2010.04.001.10.1016/j.porgcoat.2010.04.001Open DOISearch in Google Scholar

17. Ebata, H., Yasuda, M., Toshima, K. & Matsumura, S. (2008). Poly (ricinoleic acid) based novel thermosetting elastomer. J. Oleo. Sci. 57, 315–320. DOI: 10.5650/jos.57.315.10.5650/jos.57.31518469493Open DOISearch in Google Scholar

18. Park, S.J. Jin, F.L. & Lee, J.R. (2004). Effect of biodegradable epoxidized castor oil on physicochemical and mechanical properties of epoxy resins. Macromol. Chem. Phys. 205, 2048–2054. DOI: 10.1002/macp.200400214.10.1002/macp.200400214Open DOISearch in Google Scholar

19. Behr, A., Krema, S. & Kamper, A. (2012). Ethenolysis of ricinoleic acid methyl ester-an efficient way to the olechemical key substance methyl dec-9-enoate. RSC. Adv. 2, 12775–12781. DOI: 10.1039/C2RA22499B.10.1039/222499Open DOISearch in Google Scholar

20. Chandorkar, Y., Mards, G. & Basu, B. (2013). Structure, tensile properties and cytotoxicity assessment of sebacic acid based biodegradable polyesters with ricinoleic acid. J. Mater. Chem. B. 1, 865–875. DOI: 10.1039/C2TB00304J.10.1039/C2TB00304JOpen DOISearch in Google Scholar

21. Krasko, M.Y., Shikanow, A., Ezra, A. & Domb, A.J. (2003). Poly (ester anhydride) s prepared by the insertion of ricinoleic acid into poly(sebacic acid). J. Polym. Sci. Part. A: Polym. Chem. 41, 1059–1069. DOI: 10.1002/pola.10651.10.1002/pola.10651Open DOISearch in Google Scholar

22. Salimon, J. & Salih, N. (2010). Modification of epoxidized ricinoleic acid for biolubricant base oil with improved flash and pour points. Asian. J. Chem. 22, 5468–5476.Search in Google Scholar

23. Lesage, P., Candy, J.P. & Hirigoyen, C. (1996). Selectve dehydrogenation of dipentene(R-(+)-limonene) into paracymene on silica supported palladium assisted by α-olefins as hydrogen acceptor. J. Mol. Cata. A: Chem. 112, 431–435. DOI: 10.1016/1381-1169(96)00220-8.10.1016/1381-1169(96)00220-8Open DOISearch in Google Scholar

24. Zhang, Q., Bi, L., Zhao, Z., Chen, Y., Li, D., Gu, Y., Wang, J., Chen, Y., Bo, C. & Liu, X. (2010). Application of ultrasonic spraying in preparation of p-cymene by industrial dipentene dehydrogention. Chem. Eng. J. 159, 190–194. DOI: 10.1016/j.cej.2010.02.052.10.1016/j.cej.2010.02.052Open DOISearch in Google Scholar

25. Zhang, L., Zhang, M., Hu, L. & Zhou, Y. (2014). Synthesis of rigid polyurethane foams with castor oil-based flame retardant polyols. Ind. Crop. Prod. 52, 380–388. DOI: 10.1016/j.indcrop.2013.10.043.10.1016/j.indcrop.2013.10.043Open DOISearch in Google Scholar

26 Qian, L., Ye, L., Xu, G., Liu, J. & Guo, J. (2011). The non-halogen flame retardant epoxy resin based on a novel compound with phosphaphenanthrene and cyclotriphosphazene double functional groups. Polym. Degrad. Stab. 96, 1118–1124. DOI: 10.1016/j.polymdegradstab.2011.03.001.10.1016/j.polymdegradstab.2011.03.001Open DOISearch in Google Scholar

27. Zhang, L., Zhang, M., Zhou, Y. & Hu, L. (2013). The study of mechanical behavior and flame retardancy of castor oil phosphate-based rigid polyurethane foam composites containing expanded graphite and triethyl phosphate. Polym. Degrad. Stab. 98, 2784–2794. DOI: 10.1016/j.polymdegradstab.2013.10.015.10.1016/j.polymdegradstab.2013.10.015Open DOISearch in Google Scholar

28. Gao, L., Wang, D., Wang, Y., Wang, J. & Yang, B. (2008). A flame-retardant epoxy resin based on a reactive phosphorus-containing monomer of DODPP and its thermal and flame-retardant properties. Polym. Degrad. Stab. 93, 1308–1315. DOI: 10.1016/j.polymdegradstab.2008.04.004.10.1016/j.polymdegradstab.2008.04.004Open DOISearch in Google Scholar

29. Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta & Dubois, J.M. (2009). New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. A. 63, 100–125. DOI: 10.1016/j.mser.2008.09.002.10.1016/j.mser.2008.09.002Open DOISearch in Google Scholar

30. Mao, W., Li, S., Li, M., Yang, X., Song, J., Wang, M., Xia, J. & Huang, K. (2016). A Novel Flame Retardant UV-Curable Vinyl Ester Resin Monomer based on Industrial Dipentene: Preparation, Characterization and Properties. J. Appl. Polym. Sci. 133. DOI: 10.1002/app.44084.10.1002/app.44084Open DOISearch in Google Scholar

31. Asif, A., Shi, W., Shen, X. & Nie, K. (2005). Physical and thermal properties of UV curable waterborne polyurethane dispersions incorporating hyperbranched alipatic polyester of varying generation number. Polymer 46, 11066–11078. DOI: 10.1016/j.polymer.2005.09.046.10.1016/j.polymer.2005.09.046Open DOISearch in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering