Open Access

Design, preparation and properties of novel flame retardant thermosetting vinyl ester copolymers based on castor oil and industrial dipentene


Cite

1. Raquez, J.M., Deleglise, M., Lacrampe, M.F. & Krawczak, P. (2010). Thermosetting (bio) materials derived from renewable resources: a critical review. Prog. Polym. Sci. 35, 487–509. DOI: 10.1016/j.progpolymsci.2010.01.001.10.1016/j.progpolymsci.2010.01.001Open DOISearch in Google Scholar

2. Yousefi, A., Lafleur, P.G. & Gauvinm R. (1997). Kinetic studies of thermoset cure reactions: a review. Polym. Comp.18, 157–168. DOI: 10.1002/pc.10270.10.1002/pc.10270Open DOISearch in Google Scholar

3. Sultania, M., Yadaw, S.B., Rai, J.S.P. & Srivastava, D. (2010). Laminates based on vinyl ester resin and glass fabric: A study on the thermal, mechanical and morphological characteristics. Mater. Sci. Eng. A. 527, 4560–4570. DOI: 10.1016/j.msea.2010.04.038.10.1016/j.msea.2010.04.038Open DOISearch in Google Scholar

4. Boyard, N., Vayer, M., Sinturel, C., Erre, R. & Levitz, P. (2005). Study of the porous network developed during curing of thermoset blends containing low molar weight saturated polyester. Polymer. 46, 661–669. DOI: 10.1016/j.polymer.2004.11.094.10.1016/j.polymer.2004.11.094Open DOISearch in Google Scholar

5. Li, S., Yang, X., Huang, K., Li, M. & Xia, J. (2014). Design, preparation and properties of novel renewable UV-curable copolymers based on cardanol and dimer fatty acids. Prog. Org. Coat. 77, 388–394. DOI: 10.1016/j.porgcoat.2013.11.011.10.1016/j.porgcoat.2013.11.011Open DOISearch in Google Scholar

6. Yang, X., Li, S., Xia, J., Song, J., Huang, K. & Li, M. (2015). Novel renewable resource-based UV-curable copolymers derived from myrcene and tung oil: preparation, characterization and properties. Ind. Crop. Prod. 63, 17–25. DOI: 10.1016/j.indcrop.2014.10.024.10.1016/j.indcrop.2014.10.024Open DOISearch in Google Scholar

7. Benmokrane, B., Ali, A.H., Mohamed, H.M., EISafty, A. & Manalo, A. (2017). Laboratory assessment and durability performance of vinyl-ester, polyester, and epoxy glass-FRP bars for concrete structures. Compos. Part. B. Eng. DOI: 10.1016/j.compositesb.2017.02.002.10.1016/j.compositesb.2017.02.002Open DOISearch in Google Scholar

8. Afshar, A. Liao, H.T., Chiang, F.P. & Korach, C.S. (2016). Time-dependent changes in mechanical properties of carbon fiber vinyl ester composites exposed to marine environments. Compos. Struct. 144, 80–85. DOI: 10.1016/j.compstruct.2016.02.053.10.1016/j.compstruct.2016.02.053Search in Google Scholar

9. Can, E., Kinaci, E. & Palmese, G.R. (2015). Preparation and characterization of novel vinyl ester formulations derived from cardanol. Eur. Polym. J. 72, 129–147. DOI: 10.1016/j.eurpolymj.2015.09.010.10.1016/j.eurpolymj.2015.09.010Open DOISearch in Google Scholar

10. Sultania, M., Rai, J.S.P. & Srivastava, D. (2009). Synthesis and curing of cardanol-based vinyl ester resins for applications in surface coatings-I. Paint. India. 9, 89–108.Search in Google Scholar

11. Ummartyotin, S. & Pechyen, C. (2016). Strategies for development and implementation of bio-based materials as effective renewable resources of energy: A comprehensive review on adsorbent technology. Renew. Sust. Energ. Rev. 62, 654–664. DOI: 10.1016/j.rser.2016.04.066.10.1016/j.rser.2016.04.066Open DOISearch in Google Scholar

12. Kummerer, K. (2007). Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green. Chem. 9, 899–907. DOI: 10.1039/B618298B.10.1039/B618298Open DOISearch in Google Scholar

13. Chiari, L. & Zecca, A. (2011). Constraints of fossil fules depletion on global warming projections. Energy. Policy. 39, 5026–5034. DOI: 10.1016/j.enpol.2011.06.011.10.1016/j.enpol.2011.06.011Open DOISearch in Google Scholar

14. Do, H., Park, J.H. & Kim, H.J. (2008). UV-curing behavior and adhesion performance of polumeric photoinitiators blended with hydrogenated rosin epoxy methacrylate for UV-crosslinkable acrylic pressure sensitive adhesives. Eur. Polym. J. 44, 3871–3882. DOI: 10.1016/j.eurpolymj.2008.07.046.10.1016/j.eurpolymj.2008.07.046Open DOISearch in Google Scholar

15. Gobin, M., Loulergue, P., Audic, J.L. & Lemiegre, L. (2015). Synthesis and characterization of bio-based polyester materials from vegetable oil and short to long chain dicarboxylic acids. Ind. Crop. Prod. 70, 213–220. DOI: 10.1016/j.indcrop.2015.03.041.10.1016/j.indcrop.2015.03.041Open DOISearch in Google Scholar

16. Konwar, U., Karak, N. & Mandal, M. (2010). Vegetable oil based highly branched polyester/clay silver nanocomposites as antimicrobial surface coating materials. Prog. Org. Coat. 68, 265–273. DOI: 10.1016/j.porgcoat.2010.04.001.10.1016/j.porgcoat.2010.04.001Open DOISearch in Google Scholar

17. Ebata, H., Yasuda, M., Toshima, K. & Matsumura, S. (2008). Poly (ricinoleic acid) based novel thermosetting elastomer. J. Oleo. Sci. 57, 315–320. DOI: 10.5650/jos.57.315.10.5650/jos.57.31518469493Open DOISearch in Google Scholar

18. Park, S.J. Jin, F.L. & Lee, J.R. (2004). Effect of biodegradable epoxidized castor oil on physicochemical and mechanical properties of epoxy resins. Macromol. Chem. Phys. 205, 2048–2054. DOI: 10.1002/macp.200400214.10.1002/macp.200400214Open DOISearch in Google Scholar

19. Behr, A., Krema, S. & Kamper, A. (2012). Ethenolysis of ricinoleic acid methyl ester-an efficient way to the olechemical key substance methyl dec-9-enoate. RSC. Adv. 2, 12775–12781. DOI: 10.1039/C2RA22499B.10.1039/222499Open DOISearch in Google Scholar

20. Chandorkar, Y., Mards, G. & Basu, B. (2013). Structure, tensile properties and cytotoxicity assessment of sebacic acid based biodegradable polyesters with ricinoleic acid. J. Mater. Chem. B. 1, 865–875. DOI: 10.1039/C2TB00304J.10.1039/C2TB00304JOpen DOISearch in Google Scholar

21. Krasko, M.Y., Shikanow, A., Ezra, A. & Domb, A.J. (2003). Poly (ester anhydride) s prepared by the insertion of ricinoleic acid into poly(sebacic acid). J. Polym. Sci. Part. A: Polym. Chem. 41, 1059–1069. DOI: 10.1002/pola.10651.10.1002/pola.10651Open DOISearch in Google Scholar

22. Salimon, J. & Salih, N. (2010). Modification of epoxidized ricinoleic acid for biolubricant base oil with improved flash and pour points. Asian. J. Chem. 22, 5468–5476.Search in Google Scholar

23. Lesage, P., Candy, J.P. & Hirigoyen, C. (1996). Selectve dehydrogenation of dipentene(R-(+)-limonene) into paracymene on silica supported palladium assisted by α-olefins as hydrogen acceptor. J. Mol. Cata. A: Chem. 112, 431–435. DOI: 10.1016/1381-1169(96)00220-8.10.1016/1381-1169(96)00220-8Open DOISearch in Google Scholar

24. Zhang, Q., Bi, L., Zhao, Z., Chen, Y., Li, D., Gu, Y., Wang, J., Chen, Y., Bo, C. & Liu, X. (2010). Application of ultrasonic spraying in preparation of p-cymene by industrial dipentene dehydrogention. Chem. Eng. J. 159, 190–194. DOI: 10.1016/j.cej.2010.02.052.10.1016/j.cej.2010.02.052Open DOISearch in Google Scholar

25. Zhang, L., Zhang, M., Hu, L. & Zhou, Y. (2014). Synthesis of rigid polyurethane foams with castor oil-based flame retardant polyols. Ind. Crop. Prod. 52, 380–388. DOI: 10.1016/j.indcrop.2013.10.043.10.1016/j.indcrop.2013.10.043Open DOISearch in Google Scholar

26 Qian, L., Ye, L., Xu, G., Liu, J. & Guo, J. (2011). The non-halogen flame retardant epoxy resin based on a novel compound with phosphaphenanthrene and cyclotriphosphazene double functional groups. Polym. Degrad. Stab. 96, 1118–1124. DOI: 10.1016/j.polymdegradstab.2011.03.001.10.1016/j.polymdegradstab.2011.03.001Open DOISearch in Google Scholar

27. Zhang, L., Zhang, M., Zhou, Y. & Hu, L. (2013). The study of mechanical behavior and flame retardancy of castor oil phosphate-based rigid polyurethane foam composites containing expanded graphite and triethyl phosphate. Polym. Degrad. Stab. 98, 2784–2794. DOI: 10.1016/j.polymdegradstab.2013.10.015.10.1016/j.polymdegradstab.2013.10.015Open DOISearch in Google Scholar

28. Gao, L., Wang, D., Wang, Y., Wang, J. & Yang, B. (2008). A flame-retardant epoxy resin based on a reactive phosphorus-containing monomer of DODPP and its thermal and flame-retardant properties. Polym. Degrad. Stab. 93, 1308–1315. DOI: 10.1016/j.polymdegradstab.2008.04.004.10.1016/j.polymdegradstab.2008.04.004Open DOISearch in Google Scholar

29. Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta & Dubois, J.M. (2009). New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. A. 63, 100–125. DOI: 10.1016/j.mser.2008.09.002.10.1016/j.mser.2008.09.002Open DOISearch in Google Scholar

30. Mao, W., Li, S., Li, M., Yang, X., Song, J., Wang, M., Xia, J. & Huang, K. (2016). A Novel Flame Retardant UV-Curable Vinyl Ester Resin Monomer based on Industrial Dipentene: Preparation, Characterization and Properties. J. Appl. Polym. Sci. 133. DOI: 10.1002/app.44084.10.1002/app.44084Open DOISearch in Google Scholar

31. Asif, A., Shi, W., Shen, X. & Nie, K. (2005). Physical and thermal properties of UV curable waterborne polyurethane dispersions incorporating hyperbranched alipatic polyester of varying generation number. Polymer 46, 11066–11078. DOI: 10.1016/j.polymer.2005.09.046.10.1016/j.polymer.2005.09.046Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering