INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Paciorek-Sadowska, J. (2011). Studies the effect of boric acid derivatives and N, N-(dihydroxymethyl) urea on the characteristics of rigid polyurethane-polyisocyanurate foams, Kazimierz Wielki University, Bydgoszcz. [in Polish].Search in Google Scholar

2. Chmiel-Szukiewicz, E. & Lubczak, J. (2006). Reactions of trithiocyanuric acid with oxiranes. IV. Analysis of the initial stages of the synthesis of polyetherols, J. Appl. Polym. Sci. 100, 4917. DOI: 10.1002/app.23608.10.1002/app.23608Search in Google Scholar

3. Paciorek-Sadowska, J., Czupryński, B. & Liszkowska, J. (2011). Application of waste products from agricultural-food industry for production of rigid polyurethane-polyisocyanurate foams. J. Porous Mater. 18, 631. DOI: 10.1007/s10934-010-9419-8.10.1007/s10934-010-9419-8Search in Google Scholar

4. Paciorek-Sadowska, J., Czupryński, B. & Liszkowska, J. (2011). Modification of Polymers. Status and prospects for 2011, Mater. Conf. Tempo, Wrocław. 129–134.Search in Google Scholar

5. Paciorek-Sadowska, J., Czupryński, B. & Liszkowska, J. (2012). Fire-safe polyurethanes modified with new flame retardant. Chemik 66(4), 297–306.Search in Google Scholar

6. Haponiuk, J.T., Strankowski, M. & Lazarewicz, T. (2003). DSC Study of Polyurethanes obtained from 4,4′-Bis(10-Hydroxydecaoxy)biphenyl. J. Therm. Anal. Calor. 74, 609. DOI: 10.1023/B:JTAN.0000005201.12216.dd.10.1023/B:JTAN.0000005201.12216.ddSearch in Google Scholar

7. Randall, D. & Lee, S. (editors) (2002). The polyurethanes book. Wiley Ltd.Search in Google Scholar

8. Datta, J. & Rohn, M. (2007). Glycolysis of PUR waste. Vol. I. Glycolysis agents and catalysts. Polimery 52(7–8), 579. [in Polish].Search in Google Scholar

9. Datta, J. & Rohn, M. (2007). Glycolysis of PUR waste. Vol. I. Purification and use of glycolysis. Polimery 52(9), 627. [in Polish].Search in Google Scholar

10. Datta, J. & Pasternak, S. (2005). Oligouretanols obtained by glycolysis of polyurethane foam as intermediates for the preparation of cast urethane elastomers. Polimery 50(5), 352. [in Polish].10.14314/polimery.2005.352Search in Google Scholar

11. Paciorek-Sadowska, J., Czupryński, B., Liszkowska, J. & Jaskółowski, W. (2010). New organoboron polyol for the production of rigid polyurethane-polyisocyanurate foams. Vol. II. Preparation of rigid polyurethane-polyisocyanurate foams using a new organoboron polyol. Polimery 55(2), 99. [in Polish].Search in Google Scholar

12. Paciorek-Sadowska, J., Czupryński, B., Liszkowska, J. & Kotarska, K. (2012). Fire-safe polyurethane matherials modified with new flame retardant – use of new flammability test methods. Inż. Apar. Chem. 51(3), 58. [in Polish].Search in Google Scholar

13. Desroches, M., Maxime Escouvois, M., Auvergnea, R., Sylvain Caillola & Bernard Boutevina, C. B. (2012). From Vegetable Oils to Polyurethanes: Synthetic Routes to Polyols and Main Industrial Products. Polym.Rev. 52(1), 38–79. DOI: 10.1080/15583724.2011.640443.10.1080/15583724.2011.640443Search in Google Scholar

14. Zhang, J., Tang, J.J. & Zhang, J.X. (2015). Polyols Prepared from Ring-Opening Epoxidized Soybean Oil by a Castor Oil-Based Fatty Diol. Inter. J. Polym. Sci. Article ID 529235, 8 pages, http://dx.doi.org/10.1155/2015/529235 (on line).Search in Google Scholar

15. Czub, P. (2006). The use of epoxidized soybean oil to control the viscosity of the epoxy composition. Polimery 51(11–12), 821–828. [in Polish].10.14314/polimery.2006.821Search in Google Scholar

16. Prociak, A. (2007). Cell structure and thermal conductivity of rigid polyurethane foams blown with cyclopentane in different moulds. Polyuret. Mag., 4, 218–24.Search in Google Scholar

17. Prociak, A. (2008). Heat-insulating properties of rigid polyurethane foams synthesized with use of vegetable oils-based polyols. Polimery 53(3), 195–200.10.14314/polimery.2008.195Search in Google Scholar

18. Banik, I. & Sain, M.N. (2008). Water Blown Soy Polyol-Based Polyurethane Foams of Different Rigidities. J. Reinf. Plast. Compos. 27(4), 357–373. DOI: 10.1177/0731684407083955.10.1177/0731684407083955Search in Google Scholar

19. Septevani, A.A., Evans, D.A.C., Chaleat, C., Martin, D.J. & Annamalai, P.K. (2015). A systematic study substituting polyether polyol with palm kernel oil based polyester polyol in rigid polyurethane foam. Industrial Crops & Products 66, 16–26. http://dx.doi.org/10.1016/j.indcrop.2014.11.053Search in Google Scholar

20. Garrison, T.F., Kessler, M.R. & Larock, R.C. (2014). Effects of unsaturation and different ring-opening methods on the properties of vegetable oil-based polyurethane coatings. Polymer 55(4), 1004–1011. DOI: 10.1016/j.polymer.2014.01.014.10.1016/j.polymer.2014.01.014Search in Google Scholar

21. Lee, A. & Deng, Y. (2015). Green polyurethane from lignin and soybean oil through non-isocyanate reactions. European Polym. J., 63, 67–73. DOI: 10.1016/j.eurpolymj.2014.11.023.10.1016/j.eurpolymj.2014.11.023Search in Google Scholar

22. Datta, J. & Głowińska, E. (2014). Effect of hydroxylated soybean oil and bio-based propanediol on the structure and thermal properties of synthesized bio-polyurethanes. Industrial Crops & Products 61, 84–91. http://dx.doi.org/10.1016/j.indcrop.2014.06.050.Search in Google Scholar

23. Zhang, M., Zhang, J., Chen, S. & Zhou, Y. (2014). Synthesis and fire properties of rigid polyurethane foams made from a polyol derived from melamine and cardanol. Polym. Degrad. Stab., 110, 27–34. http://dx.doi.org/10.1016/j.polymdegradstab.2014.08.009Search in Google Scholar

24. Zarzyka, I. (2015). Oligomers with structural elements of imidazolidinetrione obtained from oxamic acid and oxamide: polyurethane foams modified by structural elements of imidazolidinetrione. J. Polym. Engine. 35(1), 1–10. DOI: 10.1515/polyeng-2013-0318.10.1515/polyeng-2013-0318Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering