Accesso libero

A fast and simple bonding method for low cost microfluidic chip fabrication

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] X. Zhang, L. Li and C. Luo, “Gel integration for microfluidic applications”, Lab on a Chip, vol. 16, no.10, pp. 1757-1776, 2016.Search in Google Scholar

[2] B. C. Lin, “Research and Industrialization of Microfluidic Chip”, Chinese Journal of Analytical Chemistry, vol. 44, no.4, pp. 491-499, 2016.Search in Google Scholar

[3] L. Wang, W. Liu, S. Li, T. Liu, X. Yan, Y. Shi, Z. Cheng, C. And and Chen, “Fast fabrication of microfluidic devices using a low-cost prototyping method”, Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 22, no.4, pp. 677-686, 2016.10.1007/s00542-015-2465-zOpen DOISearch in Google Scholar

[4] A. Ghobeity, H. J. Crabtree, M. Papini and J. K. Spelt, “Characterisation and comparison of microfluidic chips formed using abrasive jet micromachining and wet etching”, Journal of Micromechanics and Microengineering, vol. 22, no.2, pp. 025014, 2012.10.1088/0960-1317/22/2/025014Open DOISearch in Google Scholar

[5] R. J. Hu, M. Lei, H. S. Xiong, X. Mu, Y. G. Wang and X. F. Yin, “Highly selective acylation of ferrocene using microfluidic chip reactor”, Tetrahedron Letters, vol. 49, no.2, pp. 387-389, 2008.10.1016/j.tetlet.2007.11.035Search in Google Scholar

[6] J. Xu, L. Shi, C. Wang, D. Shan and B. Guo, “Micro hot embossing of micro-array channels ultrafine-grained pure aluminum using a silicon die”, Journal of Materials Processing Technology, vol. 225, pp. 375-384, 2015.10.1016/j.jmatprotec.2015.06.025Search in Google Scholar

[7] G. Fu, S. B. Tor, N. H. Loh, B. Y. Tay and D. E. Hardt, “The demolding of powder injection molded micro-structures: Analysis, simulation and experiment”, Journal of Micromechanics and Microengineering, vol. 18, no.7, pp. 2008.10.1088/0960-1317/18/7/075024Open DOISearch in Google Scholar

[8] X. Di, K. P. Chen, K. Ohlinger and L. Yuankun, “Nanoimprinting Lithography of a Two-layer Phase mask for Three-dimensional Photonic Structure Holographic Fabrications via Single Exposure”, Nanotechnology, vol. 22, no.3, pp. 035303, 2011.Search in Google Scholar

[9] V. Sunkara, D. K. Park and Y. K. Cho, “Versatile method for bonding hard and soft materials”, RSC Advances, vol. 2, no.24, pp. 9066-9070, 2012.Search in Google Scholar

[10] Y. L. Wu, J. J. Lin, P. Y. Hsu and C. P. Hsu, “Highly sensitive polysilicon wire sensor for DNA detection using silica nanoparticles/gamma-APTES nanocomposite for surface modification”, Sensors and Actuators: B Chemical, vol. 155, no.2, pp. 709-715, 2011.10.1016/j.snb.2011.01.035Search in Google Scholar

[11] X. Zhu, G. Liu, Y. Guo and Y. Tian, “Study of PMMA thermal bonding”, Microsystem Technologies, vol. 13, no.3, pp. 403-407, 2007.10.1007/s00542-006-0224-xSearch in Google Scholar

[12] Y. Sun, Y. C. Kwok and N. T. Nguyen, “Low-pressure, high-tem-pq erature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation”, Journal of Micromechanics and Microengineering, vol. 16, no.8, pp. 1681, 2006.10.1088/0960-1317/16/8/033Search in Google Scholar

[13] Z. Zhang, X. Wang, Y. Luo, S. He and L. Wang, “Thermal assisted ultrasonic bonding method for poly(methyl methacrylate) (PMMA) microfluidic devices”, Talanta, vol. 81, no.4, pp. 1331-1338, 2010.10.1016/j.talanta.2010.02.03120441903Open DOISearch in Google Scholar

[14] S. H. Ng, R. T. Tjeung, Z. F. Wang, A. C. W. Lu, I. Rodriguez, N. F. de and Rooij, “Thermally activated solvent bonding of polymers”, Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 14, no.6, pp. 753-759, 2008.10.1007/s00542-007-0459-1Open DOISearch in Google Scholar

[15] Y. C. Hsu and T. Y. Chen, “Applying Taguchi methods for solvent-assisted PMMA bonding technique for static and dynamic mu-TAS devices”, Biomedical Microdevices, vol. 9, no.4, pp. 513-522, 2007.10.1007/s10544-007-9059-117516175Open DOISearch in Google Scholar

[16] A. A. Yussuf, I. Sbarski, J. P. Hayes, M. Solomon and N. Tran, “Microwave welding of polymeric-microfluidic devices”, Journal of Micromechanics and Microengineering, vol. 15, no.9, pp. 1692-1699, 2005.10.1088/0960-1317/15/9/011Open DOISearch in Google Scholar

[17] R. Chantiwas, M. L. Hupert, S. R. Pullagurla, S. Balamurugan, J. Tamarit, S. Park, P. Datta, J. Goettert, Y. K. Cho and S. A. Soper, “Simple replication methods for producing nanoslits thermoplastics and the transport dynamics of double-stranded DNA through these slits”, Lab on a Chip, vol. 10, no.23, pp. 3255-3264, 2010.Search in Google Scholar

[18] L. Junshan, Q. Hongchao, L. Chong, X. Zheng, L. Yongqian and W. Liding, “Plasma assisted thermal bonding for PMMA microfluidic chips with integrated metal microelectrodes”, Sensors and Actuators: B Chemical, vol. 141, no.2, pp. 646-51, 2009.10.1016/j.snb.2009.07.032Search in Google Scholar

[19] H. Zhang, X. Liu and Z. Peng, “Investigation of Thermal Bonding on PMMA Capillary Electrophoresis Chip”, vol. 60, pp. 288, 2009.10.4028/www.scientific.net/AMR.60-61.288Search in Google Scholar

[20] H. Takagi, M. Takahashi, R. Maeda, Y. Onishi, Y. Iriye, T. Iwasaki and Y. Hirai, “Analysis of time dependent polymer deformation based on a viscoelastic model thermal imprint process”, Microelectronic Engineering, vol. 85, no.5, pp. 902-906, 2008.10.1016/j.mee.2008.01.018Search in Google Scholar

[21] E. Cheng, Z. Yin, H. Zou and P. Jurčíček, “Experimental and numerical study on deformation behavior of polyethylene terephthalate two-dimensional nanochannels during hot embossing process”, Journal of Micromechanics and Microengineering, vol. 24, no.1, pp. 015004, 2014.Search in Google Scholar

[22] M. L. Williams, R. F. Landel and J. D. Ferry, “Mechanical properties of substances of high molecular weight. 19. the temperature dependence of relaxation mechanisms amorphous polymers and other glass-forming liquids”, Journal of the American Chemical Society, vol. 77, no.14, pp. 3701-3707, 1955.Search in Google Scholar

[23] J. J. Aklonis and W. J. MacKnight Introduction to polymer viscoelasticity, Interscience: Wiley, 1983.Search in Google Scholar

[24] R. C. Progelhof, J. L.Throne and R. Progelhof, Polymer engineering principles: properties, processes, and tests for design, Cincinnati: Hanser Gardner, 1993.Search in Google Scholar

[25] P. Nagarajan and D. Yao, “Uniform Shell Patterning Using Rubber-Assisted Hot Embossing Process. II. Process Analysis”, Polymer Engineering and Science, vol. 51, no.3, pp. 601-608, 2011.10.1002/pen.21854Search in Google Scholar

[26] H. Hocheng and C. C. Nien, “Numerical analysis of effects of mold features and contact friction on cavity filling the nanoimprinting process”, Journal of Microlithography Microfabrication and Microsystems, vol. 5, no.1, pp. 011004, 2006.Search in Google Scholar

eISSN:
1339-309X
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other