1. bookVolume 8 (2018): Edizione 3 (July 2018)
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-6499
Prima pubblicazione
30 Dec 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Soft Computing Tools for Virtual Drug Discovery

Pubblicato online: 09 Feb 2018
Volume & Edizione: Volume 8 (2018) - Edizione 3 (July 2018)
Pagine: 173 - 189
Ricevuto: 03 Sep 2017
Accettato: 30 Aug 2017
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-6499
Prima pubblicazione
30 Dec 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

[1] J. D. Durrant and J. A. McCammon, NNScore: A Neural-Network-Based Scoring Function for the Characterization of Protein/Ligand Complexes, J. Chem. Inf. Model, 50, 2010, 1865-1871.10.1021/ci100244vSearch in Google Scholar

[2] Oleg Trott and Arthur J. Olson, AutoDock Vina: Improving the speed and accuracy of docking wih a new scoring function, efficient optimization, and multithreading, J. Computational Chemistry, 31, 2009, 455-461.10.1002/jcc.21334Search in Google Scholar

[3] R. Wang and X. Fang and Y. Lu and S. Wang, The PDBbind Database: Collection of Binding Affinities for Protein-Ligand Complexes with Known Three-Dimensional Structures, J. Med. Chem, 47, 2004, 2977-2980.10.1021/jm030580lApri DOISearch in Google Scholar

[4] Stefano Forli, Raccoon—AutoDock VS: an automated tool for preparing AutoDock virtual screenings, http://autodock.scripps.edu/resources/raccoon, Accessed: 2016-01-10.Search in Google Scholar

[5] G. M. Morris and R. Huey and W. Lindstrom and M. F. Sanner and R. K. Belew and D. S. Goodsell and A. J. Olson, Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility, J. Computational Chemistry, 16, 2009, 2785-2791.10.1002/jcc.21256Search in Google Scholar

[6] P. G. Polishchuk and T. I. Madzhidov and A. Varnek, Estimation of the size of drug-like chemical space based on GDB-17 data, J. Computer Aided Molecule Design, 8, 2013, 675-679.10.1007/s10822-013-9672-4Search in Google Scholar

[7] Guo-Bo Li and Ling-Ling Yang and Wen-Jing Wang and Lin-Li Li and Sheng-Yong Yang, IDScore: A New Empirical Scoring Function Based on a Comprehensive Set of Descriptors Related to ProteinLigand Interactions, J. Chem. Inf. Modeling, 53, 2013, 592-600.10.1021/ci300493wSearch in Google Scholar

[8] Daniel M. Hagan, and Martin T. Hagan, Virtual drug screening using neural networks, International Joint Conference on Neural Networks (IJCNN), pp. 579-587. IEEE, 2016.10.1109/IJCNN.2016.7727252Search in Google Scholar

[9] Martin Moller, A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks, 6, 1993, 525-533.10.1016/S0893-6080(05)80056-5Apri DOISearch in Google Scholar

[10] M. T. Hagan and H. B. Demuth and M. H. Beale, Neural Network Design, PWS, 1996.Search in Google Scholar

[11] H. B. Demuth and M. H. Beale and M. T. Hagan, The Neural Network Toolbox for MATLAB, The MathWorks, 2014.Search in Google Scholar

[12] Kohonen, T., The self-organizing map, Proceedings of the IEEE, 78, 1990, 1464-1480.10.1109/5.58325Apri DOISearch in Google Scholar

[13] T. J. Cheng, and X. Li, and Y. Li, and Z. H. Liu, and R. X. Wang, Comparative assessment of scoring functions on a diverse test set, J. Chem. Inf. Modeling, 49, 2009, 1079-1093.10.1021/ci900005319358517Search in Google Scholar

[14] Shoichet Huang and J. Irwin, Benchmarking Sets for Molecular Docking, Journal of Med. Chemistry, 49, 2006, 6789-7801.10.1021/jm0608356338331717154509Search in Google Scholar

[15] N. Triballeau, F. Archer, I. Brabet, J. P. Pin and H. O. Bertrand, Virtual screening workflow development guided by the receiver operating characteristic curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4, Journal of Med. Chemistry, 48, 2005, 2534-2547.10.1021/jm049092j15801843Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo