Accesso libero

Flaxseed oil supplementation manipulates correlations between serum individual mol % free fatty acid levels and insulin resistance in type 2 diabetics. Insulin resistance and percent remaining pancreatic β-cell function are unaffected

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Armoni M, Harel C, Bar-Yoseph F, Milo S, Karnieli E. Free fatty acids repress the GLUT4 gene expression in cardiac muscle via novel response elements. J Biol Chem 280, 34786–34795. 2005.10.1074/jbc.M50274020016096283Search in Google Scholar

Asp ML, Collene AL, Norris LE, Cole RM, Stout MB, Tang SY, Hsu JC, Belury MA. Time-dependent effects of safflower oil to improve glycemia, inflammation and blood lipids in obese, post-menopausal women with type 2 diabetes, a randomized, double-masked, crossover study. Clin Nutr 30, 443–449, 2011.10.1016/j.clnu.2011.01.001311539821295383Search in Google Scholar

Barre DE, Griscti O, Mizier-Barre KA, Hafez K. Flaxseed oil and lipoprotein (a) significantly increase bleeding time in type 2 diabetes patients in Cape Breton, Nova Scotia, Canada. J Oleo Sci 54, 347–354, 2005a.10.5650/jos.54.347Search in Google Scholar

Barre DE, Griscti O, Mizier-Barre KA, Hafez K. The mechanism by which flaxseed oil consumption increases bleeding time in patients with type 2 diabetes in Cape Breton, Nova Scotia, Canada is independent of lipoprotein (a) concentration. J Oleo Sci 54, 617–625, 2005b.10.5650/jos.54.617Search in Google Scholar

Barre DE, Mizier-Barre KA, Griscti O, Hafez K. High dose flaxseed oil supplementation may affect fasting blood serum glucose management in human type 2 diabetics. J Oleo Sci 57, 269–273, 2008.10.5650/jos.57.26918391475Search in Google Scholar

Blaak EE. Fatty acid metabolism in obesity and type 2 diabetes mellitus. Proc Nutr Soc 62, 753–760, 2003.10.1079/PNS200329014692611Search in Google Scholar

Boden G. Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol Diabetes Obes 18, 139–143, 2011.10.1097/MED.0b013e3283444b09316979621297467Search in Google Scholar

Butler TJ, Barriocanal LA, Walker M. Elevated plasma non-esterified fatty acid levels and insulin secretion in non-diabetic relatives of type 2 diabetic patients. Clin Endocrinol (Oxf) 55, 349–355, 2001.10.1046/j.1365-2265.2001.01340.x11589678Search in Google Scholar

Crochemore IC, Souza AF, de Souza AC, Rosado EL. ω-3 polyunsaturated fatty acid supplementation does not influence body composition, insulin resistance, and lipemia in women with type 2 diabetes and obesity. Nutr Clin Pract 27, 553–560, 2012.10.1177/088453361244453522661243Search in Google Scholar

De Caterina R, Madonna R, Bertolotto A, Schmidt EB. n-3 fatty acids in the treatment of diabetic patients, biological rationale and clinical data. Diabetes Care 30, 1012–1026, 2007.10.2337/dc06-133217251279Search in Google Scholar

Delarue J, Magnan C. Free fatty acids and insulin resistance, Curr Opin Clin Nutr Metab Care 10, 142–148, 2007.10.1097/MCO.0b013e328042ba9017285001Search in Google Scholar

Eriksson J, Saloranta C, Widen E, Ekstrand A, Franssila-Kallunki A, Schalin C, Groop L. Non-esterified fatty acids do not contribute to insulin resistance in persons at increased risk of developing type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 34, 192–197, 1991.10.1007/BF004182751884892Search in Google Scholar

Eyjolfson V, Spriet LL, Dyck DJ. Conjugated linoleic acid improves insulin sensitivity in young, sedentary humans. Med Sci Sports Exerc 36, 814–820, 2004.10.1249/01.MSS.0000126391.42896.3115126715Search in Google Scholar

Ezaki O, Takahashi M, Shigematsu T, Shimamura K, Kimura J, Ezaki H, Gotoh T. Long-term effects of dietary alpha-linolenic acid from perilla oil on serum fatty acids composition and on the risk factors of coronary heart disease in Japanese elderly subjects. J Nutr Sci Vitaminol (Tokyo) 45, 759–772, 1996.10.3177/jnsv.45.75910737229Search in Google Scholar

Fontes G, Semache M, Hagman DK, Tremblay C, Shah R, Rhodes CJ, Rutter J, Poitout V. Involvement of Per-Arnt-Sim Kinase and extracellular-regulated kinases-1/2 in palmitate inhibition of insulin gene expression in pancreatic beta-cells. Diabetes 58, 2048–2058, 2009.10.2337/db08-0579273153919502418Search in Google Scholar

Foster M, Petocz P, Caterson ID, Samman S. Effects of zinc and α-linolenic acid supplementation on glycemia and lipidemia in women with type 2 diabetes mellitus, a randomized, double-blind, placebo-controlled trial. Journal of Diabetes Research and Clinical Metabolism 2, 3, 2013.10.7243/2050-0866-2-3Search in Google Scholar

Glauber H, Wallace P, Griver K, Brechtel G. Adverse metabolic effect of omega-3 fatty acids in non-insulin-dependent diabetes mellitus. Ann Intern Med 108, 663–668, 1998.10.7326/0003-4819-108-5-6633282462Search in Google Scholar

Goh Y, Jumpsen J, Ryan E, Clandinin M. Effect of omega 3 fatty acid on plasma lipids, cholesterol and fatty acid content in NIDDM patients. Diabetologia 40, 45–52, 1997.10.1007/s0012500506419028717Search in Google Scholar

Grapov D, Adams SH, Pedersen TL, Garvey WT, Newman JW. Type 2 diabetes associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids. PLoS One 7, e48852, 2012.10.1371/journal.pone.0048852349360923144998Search in Google Scholar

Hamazaki K, Itomura M, Hamazaki T, Sawazaki S. Effects of cooking plant oils on recurrent aphthous stomatitis, a randomized, placebo-controlled, double-blind trial. Nutrition 22, 534–538, 2006.10.1016/j.nut.2005.10.00616472981Search in Google Scholar

Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance, time for a reevaluation. Diabetes 10, 2441–2449, 2011.10.2337/db11-0425Search in Google Scholar

Kelpe CL, Moore PC, Parazzoli SD, Wicksteed B, Rhodes CJ, Poitout V. Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis. J Biol Chem 278, 30015–30021, 2003.10.1074/jbc.M302548200Search in Google Scholar

Liu L, Li Y, Guan C, Li K, Wang C, Feng R, Sun C. Free fatty acid metabolic profile and biomarkers of isolated post-challenge diabetes and type 2 diabetes mellitus based on GC-MS and multivariate statistical analysis. J Chromatogr B Analyt Technol Biomed Life Sci 878, 2817–2825, 2010.10.1016/j.jchromb.2010.08.035Search in Google Scholar

Hawkins M, Tonelli J, Kishore P, Stein D, Ragucci E, Gitig A, Reddy K. Contribution of Elevated Free Fatty Acid Levels to the Lack of Glucose Effectiveness in Type 2 Diabetes. Diabetes 52, 2748–2758, 2003.10.2337/diabetes.52.11.2748Search in Google Scholar

Maris M, Waelkens E, Cnop M, D’Hertog W, Cunha DA, Korf H, Koike T, Overbergh L, Mathieu C. Oleate-induced beta cell dysfunction and apoptosis, a proteomic approach to glucolipotoxicity by an unsaturated fatty acid. J Proteome Res 10, 3372–3385, 2011.10.1021/pr101290nSearch in Google Scholar

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419, 1985.10.1007/BF00280883Search in Google Scholar

McManus R, Clandinin M, Jumpson J, Finegood DT, Clandinin MT, Ryan EA. A comparison of the effects of n-3 fatty acids from linseed oil and fish oil in well-controlled type 2 diabetes. Diabetes Care 19, 463–467, 1996.10.2337/diacare.19.5.463Search in Google Scholar

Mehta A, Oeser AM, Carlson MG. Rapid quantitation of free fatty acids in human plasma by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 719, 9–23, 1998.10.1016/S0378-4347(98)00403-4Search in Google Scholar

Montori V, Wollan P, Farmer A, Dinneen S. Fish oil supplementation in type 2 diabetes. Diabetes Care 23, 1407–1415, 2000.10.2337/diacare.23.9.140710977042Search in Google Scholar

Moore PC, Ugas MA, Hagman DK, Parazzoli SD, Poitout V. Evidence against the involvement of oxidative stress in fatty acid inhibition of insulin secretion. Diabetes 53, 2610–2616, 2004.10.2337/diabetes.53.10.261015448091Search in Google Scholar

Morita S, Shimajiri Y, Sakagashira S, Furuta M, Sanke T. Effect of exposure to non-esterified fatty acid on progressive deterioration of insulin secretion in patients with Type 2 diabetes, a long-term follow-up study. Diabet Med 29, 980–985, 2012.10.1111/j.1464-5491.2011.03566.xSearch in Google Scholar

Muramatsu T, Yatsuya H, Toyoshima H, Sasaki S, Li Y, Otsuka R, Wada K, Hotta Y, Mitsuhashi H, Matsushita K, Murohara T, Tamakoshi K. Higher dietary intake of alpha-linolenic acid is associated with lower insulin resistance in middle-aged Japanese. Prev Med 50, 272–276. 2010.10.1016/j.ypmed.2010.02.014Search in Google Scholar

Nakamura N, Hamazaki T, Kobayashi M, Ohta M, Okuda K. Effects of eicosapentaenoic acids on remnant like particles, cholesterol concentrations and plasma fatty acid composition in patients with diabetes mellitus. In vivo 12, 311–314, 1998.Search in Google Scholar

Nettleton J, Katz R. n-3 long-chain polyunsaturated fatty acids in type 2 diabetes. J Am Dietetic Assoc 105, 428–440, 2005.10.1016/j.jada.2004.11.029Search in Google Scholar

Newens KJ, Thompson AK, Jackson KG, Wright J, Williams CM. Acute effects of elevated NEFA on vascular function, a comparison of SFA and MUFA. Br J Nutr 105, 1343–1351, 2011.10.1017/S0007114510004976Search in Google Scholar

Wang DQ, Liu XL, Rong QF, Han L, Zhao NQ. Alpha-linolenic acid improves insulin sensitivity in obese patients. Zhonghua Yi Xue Za Zhi 93, 132–134, 2013.Search in Google Scholar

Oprescu AI, Bikopoulos G, Naassan A, Allister EM, Tang C, Park E, Uchino H, Lewis GF, Fantus IG, Rozakis-Adcock M, Wheeler MB, Giacca A. Free fatty acid-induced reduction in glucose-stimulated insulin secretion, evidence for a role of oxidative stress in vitro and in vivo. Diabetes 56, 2927–2937, 2007.10.2337/db07-0075Search in Google Scholar

Parker SM, Moore PC, Johnson LM, Poitout V. Palmitate potentiation of glucose-induced insulin release, a study using 2-bromopalmitate. Metabolism 52, 1367–1371, 2003.10.1016/S0026-0495(03)00279-8Search in Google Scholar

Plourde M, Cunnane SC. Extremely limited synthesis of long chain polyunsaturates in adults, implications for their dietary essentiality and use as supplements. Appl Physiol Nutr Metab 32, 619–634, 2007.10.1139/H07-03417622276Search in Google Scholar

Poitout V, Hagman D, Stein R, Artner I, Robertson RP, Harmon JS. Regulation of the insulin gene by glucose and fatty acids. J Nutr 136, 873–876, 2006.10.1093/jn/136.4.873185325916549443Search in Google Scholar

Poitout V, Robertson RP. Glucolipotoxicity, fuel excess and beta-cell dysfunction. Endocr Rev 29, 351–366, 2008.10.1210/er.2007-0023252885818048763Search in Google Scholar

Poitout V, Amyot J, Semache M, Zarrouki B, Hagman D, Fontes G. Glucolipotoxicity of the pancreatic beta cell. Biochim Biophys Acta 1801, 289–229, 2010.10.1016/j.bbalip.2009.08.006282400619715772Search in Google Scholar

Reaven GM, Chen Y. Role of abnormal free fatty acid metabolism in the development of non-insulin-dependent diabetes mellitus. Am J Med 85, 106–112, 1988.10.1016/0002-9343(88)90402-0Search in Google Scholar

Rivellese AA, Maffettone A, Iovine C, Di Marino L, Annuzzi G, Mancini M, Riccardi G. Long-term effects of fish oil on insulin resistance and plasma lipoproteins in NIDDM patients with hypertriglyceridemia. Diabetes Care 19, 1207–1213, 1996.10.2337/diacare.19.11.12078908381Search in Google Scholar

Robertson RP, Harmon J, Tran PO, Poitout V. Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 53, 119–124, 2004.10.2337/diabetes.53.2007.S119Search in Google Scholar

Roscoe JT. Fundamental Research Statistics for the Behavioral Sciences. Second Edition. Holt, Reinhart and Winston, Montreal 217, 1975.Search in Google Scholar

Salgin B, Ong KK, Thankamony A, Emmett P, Wareham NJ, Dunger DB. Higher fasting plasma free fatty acid levels are associated with lower insulin secretion in children and adults and a higher incidence of type 2 diabetes. J Clin Endocrinol Metab 97, 302–309, 2012.10.1210/jc.2012-142822740706Search in Google Scholar

Stefan N, Kantartzis K, Celebi N, Staiger H, Machann J, Schick F, Cegan A, Elcnerova M, Schleicher E, Fritsche A, Haring HU. Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans. Diabetes Care 33, 405–407, 2010.10.2337/dc09-0544280929219889804Search in Google Scholar

Taylor CG, Noto AD, Stringer DM, Froese S, Malcolmson L. Dietary milled flaxseed and flaxseed oil improve N-3 fatty acid status and do not affect glycemic control in individuals with well-controlled type 2 diabetes. J Am Coll Nutr 29, 72–80, 2010.10.1080/07315724.2010.1071981920595648Search in Google Scholar

Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care 27, 1487–1495, 2004.10.2337/diacare.27.6.148715161807Search in Google Scholar

Woodman R, Mori T, Burke V, Puddey IB, Watts GF, Beilin LJ. Effects of purified eicosapentaenoic and docosahexaenoic acids on glycemic control, blood pressure and serum lipids in type 2 diabetic patients with treated hypertension. Am J Clin Nutr 76, 1007–1015, 2002.10.1093/ajcn/76.5.100712399272Search in Google Scholar

Yang J, Xu G, Hong Q, Liebich HM, Lutz K, Schmulling RM, Wahl HG. Discrimination of Type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles. J Chromatogr B Analyt Technol Biomed Life Sci 813, 53–58, 2004.10.1016/j.jchromb.2004.09.02315556515Search in Google Scholar

Ye J. Role of insulin in the pathogenesis of free fatty acid-induced insulin resistance in skeletal muscle. Endocr Metab Immune Disord Drug Targets 7, 65–74, 2007.10.2174/18715300778005942317346204Search in Google Scholar

Yi L, He J, Liang Y, Yuan D, Gao H, Zhou H. Simultaneously quantitative measurement of comprehensive profiles of esterified and non-esterified fatty acid in plasma of type 2 diabetic patients. Chem Phys Lipids 150, 204–216, 2007.10.1016/j.chemphyslip.2007.08.00217880934Search in Google Scholar

eISSN:
1336-0329
Lingua:
Inglese