Accesso libero

Copper and manganese acquisition in maize (Zea mays L) under different P and K fertilization

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Bąk K., Gaj R. (2016): The effect of differentiated phosphorus and potassium fertilization on maize grain yield and plant nutritional status at the critical growth stage. J. Elem. 21(2): 337-348.Search in Google Scholar

Bąk K, Gaj R., Budka A. (2016): Accumulation of nitrogen, phosphorus and potassium in mature maize under variable rates of mineral fertilization. Fragm. Agron. 33(1): 7-19.Search in Google Scholar

Bierman P.M., Rosen C.J. (1994): Phosphate and trace metal availability from sewage-sludge incinerator ash. J. Environ. Qual. 23: 822-830.10.2134/jeq1994.00472425002300040030xSearch in Google Scholar

Chalmers A.G., Sinclair A.H., Carver M. (1999): Nutrients other than nitrogen, phosphorus and potassium (NPK) for cereals. HGCA Res. Rev. 41 London.Search in Google Scholar

Fageria N.K, Baligar V.V., Clark R.B. (2002): Micronutrients in crop production. Adv. Agron. 77: 185-268.10.1016/S0065-2113(02)77015-6Search in Google Scholar

Fageria N.K, Baligar V.V. (2005): Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 88: 97-185.10.1016/S0065-2113(05)88004-6Search in Google Scholar

Fageria N.K., Baligar V.C., Li Y.C. (2008): The role of nutrient efficient plants in improving crop yields in the twenty first century. J. Plant Nutr. 31(6): 1121-1157. DOI:1080/01904160802116068.10.1080/01904160802116068Search in Google Scholar

Feil B., Moser S.B., Jampatong S. (2005): Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization. Crop Sci. 45: 516-523.10.2135/cropsci2005.0516Search in Google Scholar

Gaj R., Przybył J., Górski D., Rębarz K. (2013): The effect of different phosphorus and potassium fertilization on the content and uptake of microelements (Zn, Cu, Mn) by winter triticale. II Uptake of nutrients. Zesz. Nauk Roln. Wrocław Seria Rolnictwo 104: 19-26Search in Google Scholar

Grusak M., Pearson J.N., Martentes E. (1999): The physiology of micronutrient homeostasis in field crops. Field Crops Res. 60: 41-56.10.1016/S0378-4290(98)00132-4Search in Google Scholar

Hänsch R., Mendel R.R. (2009): Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Option in Plant Biology 12: 259-266.10.1016/j.pbi.2009.05.00619524482Search in Google Scholar

Jiang W.Z. (2006): Mn use efficiency in different wheat cultivars. Environ. Experimental Botany 57: 41-50.10.1016/j.envexpbot.2005.04.008Search in Google Scholar

Li B.Y., Zhou D.M., Cang L., Zhang H.L., Fan X.H., Qin S.W. (2007): Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. Soil & Tillage Res. 96: 166-173.10.1016/j.still.2007.05.005Search in Google Scholar

Li B.Y., Huang S.M., Wei M.B, Zhang H.L., Shen A.L., Xu J.M.m, Ruan X.L. (2010): Dynamics of soil and grain micronutrients as affected by long-term fertilization in an aquic incptisol. Pedosphere 20(6): 725-735.Search in Google Scholar

Lipiński W. (2013): Zasobność gleb Polski w mikroelementy. Studia i Raporty IUNGPIB 34(8): 121-131.Search in Google Scholar

Mahler R.L., Li G.C., Wattenbarger D.W. (1992): Manganese relationshps in spring wheat and spring barley production in Northern Idaho. Commun. Soil Sci. Plant Anal. 23: 1671-1692.10.1080/00103629209368696Search in Google Scholar

Marschner, H. (1995): Mineral nutrition in higher plants. Academic Press, London.10.1016/B978-012473542-2/50008-0Search in Google Scholar

Mortvedt J.J. (1994): Needs for controlled availability micronutrient fertilizers. Fertil. Res. 38: 213-221.Search in Google Scholar

Person J.N., Rengle Z. (1994): Distribution, remobilization of Zn and Mn during grain development in wheat. J. Exp. Bot. 45: 1829-1835.Search in Google Scholar

Person J.N., Rengle Z. (1995): Uptake and distribution of 65Zn and 54Mn in wheat grown at sufficient and deficient levels of Zn and Mn. I. During vegetative growth. J. Exp. Bot. 46: 833-839.Search in Google Scholar

Schulte E., Kelling K. (2000): Plant Analysis: a diagnostic tool. University of Wisconsin-Madison. Available online at: www.ces.pardue.edu/extmedia/NCH/NCH-46.htmlSearch in Google Scholar

Quzounidou G., Ciamporova M., Moustakas M., Karataglis S. 1995. Responses of maize (Zea mays L.) plants to copper stress, growth, mineral content and ultrastructure of roots. Environ. Exp. Bot. V. 35(2): 163-176.Search in Google Scholar

Van Campen D.R., Glahn R.P. (1999): Micronutrient bioavailability techniques: accuracy, problems and limitations. Field Crops Res. 60: 93-113.10.1016/S0378-4290(98)00135-XSearch in Google Scholar

Wei X.R., Hao M.D., Shao M.G., Gale W. (2006): Changes in soil properties and availability of soil micronutrients after 18 years of cropping and fertilization. Soil Till. Res. 91: 120-130.Search in Google Scholar

Xia HY., Zhao JH., Sun JH., Xue YF., Eagling T., Bao XG., Zhang FS., Li L. (2013): Maize grain concentrations and above-ground shoot acquisition of micronutrients as affected by intercropping with turnip, faba bean, chickpea, and soybean. Sci China Life Sci. 56: 823-834, DOI: 10.10007/s11427-013-4524-y.Search in Google Scholar

Zhang R., Guo Y.X., Nan C.Q. (2004): Study of trace elements of wheat grain in different fertili treatments. Acta Bot. Boreal. Occident. Sin. 24: 125-129.Search in Google Scholar

eISSN:
1896-3811
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Life Sciences, Bioinformatics, other, Mathematics, Probability and Statistics, Applied Mathematics