1. bookVolume 17 (2017): Edizione 4 (October 2017)
Dettagli della rivista
Prima pubblicazione
25 Nov 2011
Frequenza di pubblicazione
4 volte all'anno
Accesso libero

Endogenous Nitric Oxide and Dopamine Regulate Feeding Behavior in Neonatal Layer-type Chickens

Pubblicato online: 27 Oct 2017
Volume & Edizione: Volume 17 (2017) - Edizione 4 (October 2017)
Pagine: 1029 - 1042
Ricevuto: 02 Nov 2016
Accettato: 20 Feb 2017
Dettagli della rivista
Prima pubblicazione
25 Nov 2011
Frequenza di pubblicazione
4 volte all'anno

Alimohammadi S., Zendehdel M., Babapour V. (2015). Modulation of opioid-induced feeding behavior by endogenous nitric oxide in neonatal layer-type chicks. Vet. Res. Commun., 39: 105–113.Search in Google Scholar

Alizadeh A., Zendehdel M., Babapour V., Charkhkar S., Hassanpour S. (2015). Role of cannabinoidergic system on food intake in neonatal layer-type chicken. Vet. Res. Commun., 39: 151–157.Search in Google Scholar

Antunes F., Nunes C., Laranjinha J., Cadenas E. (2005). Redox interactions of nitric oxide with dopamine and its derivatives. Toxicology, 208: 207–212.Search in Google Scholar

Blevins J.E., Stanley B.G., Reidelberger R.D. (2002). DMSO as a vehicle for central injections: tests with feeding elicited by norepinephrine injected into the paraventricular nucleus. Pharmacol. Biochem. Behav., 71: 277–282.Search in Google Scholar

Boswell T. (2005). Regulation of energy balance in birds by the neuroendocrine hypothalamus. J. Poultry Sci., 42: 161–181.10.2141/jpsa.42.161Apri DOISearch in Google Scholar

Calignano A., Persico P., Mancuso F., Sorrentino L. (1993). Endogenous nitric oxide modulates morphine-induced changes in locomotion and food intake in mice. Eur. J. Pharmacol., 231: 415–419.Search in Google Scholar

Choi Y.H., Furuse M., Okumura J., Denbow D.M. (1994). Nitric oxide controls feeding behavior in the chicken. Brain Res., 654: 163–166.Search in Google Scholar

Choi Y.H., Furuse M., Okumura J., Denbow D.M. (1995). The interaction of clonidine and nitric oxide on feeding behavior in the chicken. Brain Res., 699: 161–164.Search in Google Scholar

Conductier G., Nahon J.L., Guyon A. (2011). Dopamine depresses melanin concentrating hormone neuronal activity through multiple effects on α2-noradrenergic, D1 and D2-like dopaminergic receptors. Neuroscience, 178: 89–100.Search in Google Scholar

Davis J.L., Masuoka D.T., Gerbrandt L.K., Cherkin A. (1979). Autoradiographic distribution of L-proline in chicks after intracerebral injection. Physiol. Behav., 22: 693–695.Search in Google Scholar

De Luca B., Monda M., Sullo A. (1995). Changes in eating behavior and thermogenic activity following inhibition of nitric oxide formation. Am. J. Physiol., 268: 1533–1538.Search in Google Scholar

Denbow D.M. (1994). Peripheral regulation of food intake in poultry. J. Nutr., 124: 1349S–1354S.Search in Google Scholar

Denbow D.M., Cherry J.A., Siegel P.B., Van Kery H.P. (1981). Eating, drinking and temperature response of chicks to brain catecholamine injections. Physiol. Behav., 27: 265–269.Search in Google Scholar

Denbow D.M., Van Krey H.P., Lacy M.P., Dietrick T.J. (1983). Feeding, drinking and temperature of leghorn chicks: effects of ICV injections of biogenic amine. Physiol. Behav., 31: 85–90.Search in Google Scholar

Furuse M., Matsumoto M., Saito N., Sugahara K., Hasegawa S. (1997). The central corticotropin-releasing factor and glucagon-like peptide-1 in food intake of the neonatal chick. Eur. J. Pharmacol., 339: 211–214.Search in Google Scholar

Gholami A., Haeri-Rohani A., Sahraei H., Zarrindast M.R. (2002). Nitric oxide mediation of morphine-induced place preference in the nucleus accumbens of rat. Eur. J. Pharmacol., 449: 269–277.Search in Google Scholar

Gomes M.Z., Raisman-Vozari R., Del Bel E.A. (2008). Nitric oxide synthase inhibitor decreases 6-hydroxydopamine effects on tyrosine hydroxylase and neuronal nitric oxide synthase in the rat nigrostriatal pathway. Brain Res., 1203: 160–169.10.1016/j.brainres.2008.01.088Apri DOISearch in Google Scholar

Guix F.X., Uribesalgo I., Coma M., Muñoz F.J. (2005). The physiology and pathophysiology of nitric oxide in the brain. Prog. Neurobiol., 76: 126–152.Search in Google Scholar

Guy E.G., Choi E., Pratt W.E. (2011). Nucleus accumbens dopamine and mu-opioid receptors modulate the reinstatement of food-seeking behavior by food associated cues. Behav. Brain Res., 219: 265–272.Search in Google Scholar

Hartung H., Threlfell S., Cragg S.J. (2011). Nitric oxide donors enhance the frequency dependence of dopamine release in nucleus accumbens. Neuropsychopharmacol., 36: 1811–822.Search in Google Scholar

Hassanpour S., Zendehdel M., Babapour V., Charkhkar S. (2015). Endocannabinoid and nitric oxide interaction mediates food intake in neonatal chicken. Brit. Poultry Sci., 56: 443–451.Search in Google Scholar

Hoque K.E., West A.R. (2012). Dopaminergic modulation of nitric oxide synthase activity in subregions of the rat nucleus accumbens. Synapse, 66: 220–231.10.1002/syn.21503Apri DOISearch in Google Scholar

Jonaidi H., Noori Z. (2012). Neuropeptide Y-induced feeding is dependent on GABAA receptors in neonatal chicks. J. Comp. Physiol. A, 198: 827–832.Search in Google Scholar

Khan M.S.I., Tachibana T., Hasebe Y., Masuda N., Ueda H. (2007). Peripheral or central administration of nitric oxide synthase inhibitor affects feeding behavior in chicks. Comp. Biochem. Physiol. A, 148: 458–462.Search in Google Scholar

Khan M.S.I., Nakano Y., Tachibana T., Ueda H. (2008). Nitric oxide synthase inhibitor attenuates the anorexigenic effect of corticotropin-releasing hormone in neonatal chicks. Comp. Biochem. Phys. A, 149: 325–329.Search in Google Scholar

Leal E., Fernández-Durán B., Agulleiro M.J., Conde-Siera M., Míguez J.M., Cerdá-Reverter J.M. (2013). Effects of dopaminergic system activation on feeding behavior and growth performance of the sea bass (Dicentrarchus labrax): A self-feeding approach. Horm. Behav., 64: 113–121.Search in Google Scholar

Lee S., Kim C.K., Rivier C. (1999). Nitric oxide stimulates ACTH secretion and the transcription of the genes encoding for NGFI-B, corticotropin-releasing factor, corticotropin-releasing factor receptor type 1, and vasopressin in the hypothalamus of the intact rat. J. Neurosci, 19: 7640–7647.Search in Google Scholar

Liu Y. (1996). Nitric oxide influences dopaminergic processes. Adv. Neuroimmunol., 6: 259–264.10.1016/S0960-5428(96)00021-6Apri DOISearch in Google Scholar

Mc Cormack J.F., Denbow D.M. (1989). Ingestive responses to mu and delta opioid receptor agonists in the domestic fowl. Brit. Poultry Sci., 30: 327–340.10.1080/000716689084171542765980Apri DOISearch in Google Scholar

Meade S., Denbow M. (2001). Feeding, drinking, and temperature response of chickens to intracerebroventricular histamine. Physiol. Behav., 73: 65–73.Search in Google Scholar

Meloni E.G., Gerety L.P., Knoll A.T., Cohen B.M., Carlezon Jr W.A. (2006) Behavioral and anatomical interactions between dopamine and corticotropin-releasing factor in the rat. J. Neurosci., 26: 3855–3863.10.1523/JNEUROSCI.4957-05.2006667412916597740Apri DOISearch in Google Scholar

Morley J.E., Flood J.F. (1991). Evidence that nitric oxide modulates food intake in mice. Life Sci., 49: 707–711.Search in Google Scholar

Morley J.E., Farr S.A., Sell R.L., Hileman S.M., Banks W.A. (2011). Nitric oxide is a central component in neuropeptide regulation of appetite. Peptides, 32: 776–780.10.1016/j.peptides.2010.12.01521262305Apri DOISearch in Google Scholar

Morris S.MJr. (2004). Enzymes of arginine metabolism. J. Nutr., 134 (10 Suppl): 2743S–2747S.Search in Google Scholar

Motahari A.A., Sahraei H., Meftahi G.H. (2016). Role of nitric oxide on dopamine release and morphine-dependency. Basic Clin. Neurosci., 7: 283–290.Search in Google Scholar

Novoseletsky N., Nussinovitch A., Friedman-Einat M. (2011). Attenuation of food intake in chicks by an inverse agonist of cannabinoid receptor1 administered by either injection or ingestion in hydrocolloid carriers. Gen. Comp. Endocrinol., 170: 522–527.Search in Google Scholar

Olanrewaju H.A., Thaxton J.P., Dozier W.A., Purswell J., Roush W.B., Branton S.L. (2006). A review of lighting programs for broiler production. Int. J. Poultry Sci., 5: 301–308.Search in Google Scholar

Padovan-Neto F.E., Cavalcanti-Kiwiatkoviski R., Carolino R.O.G., Anselmo-Franci J., Del Bel E. (2015). Effects of prolonged neuronal nitric oxide synthase inhibition on the development and expression of L-DOPA-induced dyskinesia in 6-OHDA-lesioned rats. Neuropharmacology, 89: 87–99.Search in Google Scholar

Pereira M., Siba I.P., Chioca L.R., Correia D., Vital M.A.B.F., Pizzolatti G., Santos A.R.S., Andreatini R. (2011). Myricitrin, a nitric oxide and protein kinase C inhibitor, exerts antipsychotic-like effects in animal models. Prog. Neuro-Psychoph. Biol. Psych., 35: 1636–1644.10.1016/j.pnpbp.2011.06.00221689712Apri DOISearch in Google Scholar

Qi W., Ding D., Salvi R.J. (2008). Cytotoxic effects of dimethyl sulphoxide (DMSO) on cochlear organotypic cultures. Hear Res., 236: 52–60.Search in Google Scholar

Richards M.P. (2003). Genetic regulation of feed intake and energy balance in poultry. Poultry Sci., 82: 907–916.10.1093/ps/82.6.90712817445Apri DOISearch in Google Scholar

Riediger T., Giannini P., Erguven E., Lutz T. (2006). Nitric oxide directly inhibits ghrelin-activated neurons of the arcuate nucleus. Brain Res., 1125: 37–45.10.1016/j.brainres.2006.09.04917109829Apri DOISearch in Google Scholar

Risbrough V.B., Hauger R.L., Roberts A.L., Vale W.W., Geyer M.A. (2004). Corticotropin-releasing factor receptors CRF1 and CRF2 exert both additive and opposing influences on defensive startle behavior. J. Neurosci., 24: 6545–6552.10.1523/JNEUROSCI.5760-03.2004672988315269266Apri DOISearch in Google Scholar

Saito E.S., Kaiya H., Tachibana T., Tomonaga S., Denbow D.M., Kangawa K., Furuse M. (2005). Inhibitory effect of ghrelin on food intake is mediated by the corticotropin-releasing factor system in neonatal chicks. Regul. Pept., 125: 201–208.Search in Google Scholar

Salum C., Gumaraes F.S., Brandao M.L., Del Bel E.A. (2006). Dopamine and nitric oxide interaction on the modulation of prepulse inhibition of the acoustic startle response in the Wistar rat. Psychopharmacol., 185: 133–141.Search in Google Scholar

Salum C., Raisman-Vozari R., Michel P.P., Gomes M.Z., Mitkovski M., Ferrario J.E., Ginestet L., Del Bel E.A. (2008). Modulation of dopamine uptake by nitric oxide in cultured mesencephalic neurons. Brain Res., 1198: 27–33.10.1016/j.brainres.2007.12.05418255050Apri DOISearch in Google Scholar

Samarghandian S., Ohata H., Yamauchi N., Shibasaki T. (2003). Corticotropin-releasing factor as well as opioid and dopamine are involved in tail-pinch-induced food intake of rats. Neurosciences, 116: 519–524.Search in Google Scholar

Shiraishi J., Yanagita K., Fujita M., Bungo T. (2008). Central insulin suppresses feeding behavior via melanocortins in chicks. Domest. Anim. Endocrinol., 34: 223–228.Search in Google Scholar

Toda N., Kishioka S., Hatano Y., Toda H. (2009). Interactions between morphine and nitric oxide in various organs. J. Anesth., 23: 554–568.Search in Google Scholar

Tseng L., Mazella J., Goligorsky M.S., Rialas C.M., Stefano G.B. (2000). Dopamine and morphine stimulate nitric oxide release in human endometrial glandular epithelial cells. J. Soc. Gynecol. Investig., 7: 343–347.Search in Google Scholar

Uzbay I.T., Oglesby M.W. (2001). Nitric oxide and substance dependence. Neurosci. Biobehav. Rev., 25: 43–52.Search in Google Scholar

Van Tienhoven A., Juhasz L.P. (1962). The chicken telencephalon, diencephalon and mesencephalon in sterotaxic coordinates. J. Comp. Neurol., 118: 185–197.10.1002/cne.90118020513924637Apri DOISearch in Google Scholar

Volkow N.D., Wang G.J., Baler R.D. (2011). Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn. Sci., 15: 37–46.Search in Google Scholar

Volz T.J., Schenk J.O. (2004). L-arginine increases dopamine transporter activity in rat striatum via a nitric oxide synthase-dependent mechanism. Synapse, 54: 173–182.10.1002/syn.2007515452864Apri DOISearch in Google Scholar

Zarrindast M.R., Gholami A., Sahraei H., Haeri-Rohani A. (2003). Role of nitric oxide in the acquisition and expression of apomorphine- or morphine-induced locomotor sensitization. Eur. J. Pharmacol., 482: 205–213.Search in Google Scholar

Zendehdel M., Hassanpour S. (2014 a). Ghrelin-induced hypophagia is mediated by the β2 adrenergic receptor in chicken. J. Physiol. Sci., 64: 383–391.10.1007/s12576-014-0330-y25080314Apri DOISearch in Google Scholar

Zendehdel M., Hassanpour S. (2014 b). Central regulation of food intake in mammals and birds: a review. Neurotransmitter, 1: 1–7.Search in Google Scholar

Zendehdel M., Hasani K., Babapour V., Seyedali Mortezaei S., Khoshbakht Y., Hassanpour S. (2014). Dopamine-induced hypophagia is mediated by D1 and 5HT-2c receptors in chicken. Vet. Res. Commun., 38: 11–19.10.1007/s11259-013-9581-y24122738Apri DOISearch in Google Scholar

Zendehdel M., Hamidi F., Hassanpour S. (2015 a). The effect of histaminergic system on nociceptin/orphanin FQ induced food intake in chicken. Int. J. Pept. Res. Ther., 21: 179–186.10.1007/s10989-014-9445-5Search in Google Scholar

Zendehdel M., Hassanpour S., Babapour V., Charkhkar S., Mahdavi M. (2015 b). Interaction between endocannabinoid and opioidergic systems regulates food intake in neonatal chicken. Int. J. Pept. Res. Ther., DOI 10.1007/s10989-015-9457-910.1007/s10989-015-9457-9Apri DOISearch in Google Scholar

Zendehdel M., Baghbanzadeh A., Aghelkohan P., Hassanpour S. (2016). Central histaminergic system interplay with suppressive effects of immune challenge on food intake in chicken. Brit. Poultry Sci., 57: 271–279.10.1080/00071668.2016.114117326924422Apri DOISearch in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo