Accesso libero

Preliminary assessment of the bending strength of mid-nineteenth century oak timber



1. Kossakowski P.G.: Influence of anisotropy on the energy release rate Gi for highly orthotropic materials. Journal of Theoretical and Applied Mechanics 45(4) (2007), pp. 739-752.Search in Google Scholar

2. Stefanczyk B.: Budownictwo ogolne. Matenaly i wyroby budowlane. Tom 1, Arkady, Warszawa, 2005.Search in Google Scholar

3. Rudzinski L.: Konstrukcje drewniane. Naprawy, wzmocmema, przyklady obhczeii., Skrypt Pohtechniki Switokrzyskiej, Kielce, 2010.Search in Google Scholar

4. Mazars J.: A descnption of micro- and macroscale damage of concrete structures. Engineering Fracture Mechanics 25(5-6) (1986), pp. 729-737.Search in Google Scholar

5. Yazdani S., Schreyer H.: Combined Plasticity and Damage Mechanics Model for Plain Concrete, Journal of Engineering Mechanics 116(7) (1990), pp. 1435-1450.Search in Google Scholar

6. Bazant Z. P.: Nonlocal damage theory based on micromechanics of crack interaction. Journal of Engineering Mechanics ASCE 120(3) (1994), pp. 593-617.10.1061/(ASCE)0733-9399(1994)120:3(593)Search in Google Scholar

7. Chaboche J. L., Lesne P. M., Maire J. F.: Continuum Damage Mechanics, Anisotropy and Damage Deactivation for Brittle Materials Like Concrete and Ceramic Composites, International Journal of Damage Mechanics 4(1) (1995), pp. 5-22.Search in Google Scholar

8. Sandhaas C., Van de Kuilen J.W., Blass H.J.: Constitutive model for wood based on continuum damage mechanics, WCTE, World conference on timber engineering, Auckland, New Zealand, 15-19 July 2012, pp. 159-167.Search in Google Scholar

9. Kossakowski P.G.: Microstructural failure criteria for S235JR steel subjected to spatial stress states, Archives of Civil and Mechanical Engineering 15(1) (2015), pp. 195-205.10.1016/j.acme.2014.02.008Search in Google Scholar

10. Kossakowski P.G., Wciślik W., Experimental determination and application of critical void volume fraction fc for S235JR steel sudjected to multi-axial stress state, in: T. Łodygowski, J. Rakowski, P. Litewka (Eds.), Recent Advances in Computational Mechanics, CRC Press/Balkema, London, 2014, pp. 303-309.10.1201/b16513-39Search in Google Scholar

11. Kossakowski P.G., Wciślik W.: Effect of critical void volume fraction fF on result of ductile fracture simulation for S235JR steel under multi-axial stress states, Key Engineering Materials - Fracture and Fatigue of Materials and Structure 598 (2014), pp. 113-118.Search in Google Scholar

12. Brol L., Dawczyński S., Malczyk A., Adamczyk K.: Testing timber beams after 130 years of utilization, Wiadomości Konserwatorskie - Journal of Heritage Conservation nr 32 (2012), pp. 100-104.Search in Google Scholar

13. Nowak T., Brol J., Jaseńko J.: Estimation of the strength parameters of wood in building structures - preliminary studies, Annals of WULS - SGGW Forestry and Wood Technology No. 83 (2013), pp. 303-306.Search in Google Scholar

14. PN-EN 408:2004 Konstrukcje drewniane. Drewno konstrukcyjne i klejone warstwowo. Oznaczanie niektórych właściwości fizycznych i mechanicznych.Search in Google Scholar

15. PN-EN 384:2004 Drewno konstrukcyjne. Oznaczanie wartości charakterzystycznych właściwósci mechanicznych i gęstości.Search in Google Scholar

16. PN-EN 338:2004 Drewno konstrukcyjne. Klasy wytrzymałości.Search in Google Scholar

Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Materials Sciences, Functional and Smart Materials