1. bookVolume 67 (2017): Edizione 2 (June 2017)
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Accesso libero

Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system

Pubblicato online: 01 Jun 2017
Volume & Edizione: Volume 67 (2017) - Edizione 2 (June 2017)
Pagine: 149 - 168
Accettato: 02 Mar 2017
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. F. Nakayama, T. Yasuda, S. Umeda, M. Asada, T. Imamura, V. Meineke and M. Akashi, Fibroblast growth factor-12 (FGF12) translocation into intestinal epithelial cells is dependent on a novel cellpenetrating peptide domain involvement of internalization in the in vivo role of exogenous FGF12, J. Biol. Chem. 286 (2011) 25823-25834; DOI: 10.1074/jbc.M110.198267.10.1074/jbc.M110.198267313829221518765Search in Google Scholar

2. L. M. Ensign, R. Cone and J. Hanes, Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers, Adv. Drug Deliv. Rev. 64 (2012) 557-570; DOI: 10.1016/j.addr.2011.12.009.10.1016/j.addr.2011.12.009332227122212900Search in Google Scholar

3. S. A. Zaidi, Latest trends in molecular imprinted polymer based drug delivery systems, RSC Adv. 6 (2016) 88807-88819; DOI: 10.1039/c6ra18911c.10.1039/C6RA18911CSearch in Google Scholar

4. R. Schirhagl, D. Podlipna, P. A. Lieberzeit and F. L. Dickert, Comparing biomimetic and biological receptors for insulin sensing, Chem. Commun. 46 (2010) 3128-3130.10.1039/c000936a20424752Search in Google Scholar

5. R. Suedee, W. Naklua, S. Laengchokshoi, K. Thepkaue, P. Pathaburee and M. Nuanplub, Investigation of a self-assembling microgel containing an (S)-propranolol molecularly imprinted polymer in a native tissue microenvironment: Part I preparation and characterization. Part II biological application and testing, Process Biochem. 50 (2015) 517-544.Search in Google Scholar

6. K. Eunkyung and C. Seung-Woo, Biomimetic polymer scaffolds to promote stem cell-mediated osteogenesis, Int. J. Stem Cells 6 (2013) 87-91.10.15283/ijsc.2013.6.2.87387820824386552Search in Google Scholar

7. R. Schirhagl, U. Latif, D. Podlipna, H. Blumenstock and F. L. Dickert, Natural and biomimetic materials for the detection of insulin, Anal. Chem. 84 (2012) 3908-3913.10.1021/ac201687b22468696Search in Google Scholar

8. E. M. Kolonko, J. K. Pontrello, S. L. Mangold and L. L. Kiessling, General synthetic route to cellpermeable block copolymers via ROMP, J. Am. Chem. Soc. 131 (2009) 7327-7333.10.1021/ja809284s275081619469577Search in Google Scholar

9. F. Puoci, G. Cirillo, M. Curcio, O. I. Parisi, F. Iemma and N. Picci, Molecularly imprinted polymers in drug delivery: state of art and future perspectives, Expert Opin. Drug Deliv. 8 (2011) 1379-1393; DOI: 10.1517/17425247.2011.609166.10.1517/17425247.2011.60916621933031Search in Google Scholar

10. A. Viehof, L. Javot, A. Béduneau, Y. Pellequer and A. Lamprecht, Oral insulin delivery in rats by nanoparticles prepared with non-toxic solvents, Int. J. Pharm. 443 (2013) 169-174; DOI: 10.1016/j.ijpharm.2013.01.017.10.1016/j.ijpharm.2013.01.01723328680Search in Google Scholar

11. E. Verspohl and H. Ammon, Evidence for the presence of insulin receptors in rat islets of Langerhans, J. Clin. Invest. 65 (1980) 1230; DOI: 10.1172/JCI109778.10.1172/JCI1097783714576988459Search in Google Scholar

12. D. R. Kryscio and N. A. Peppas, Critical review and perspective of macromolecularly imprinted polymers, Acta Biomater. 8 (2012) 461-473; DOI: 10.1016/j.actbio.2011.11.005.10.1016/j.actbio.2011.11.005Search in Google Scholar

13. L. Achar and N. Peppas, Preparation, characterization and mucoadhesive interactions of poly (methacrylic acid) copolymers with rat mucosa, J. Control. Release 31 (1994) 271-276; DOI: 10.1016/0168-3659(94)90009-4.10.1016/0168-3659(94)90009-4Search in Google Scholar

14. S. Li, E. N. Davis, X. Huang, B. Song, R. Peltzman, D. M. Sims, Q. Lin and Q. Wang, Synthesis and development of poly (n-hydroxyethyl acrylamide)-ran- 3-acrylamidophenylboronic acid polymer fluid for potential application in affinity sensing of glucose, J. Diabetes Sci. Technol. 5 (2011) 1060-1067.10.1177/193229681100500506320886122027298Search in Google Scholar

15. J. Wang, P. A. Cormack, D. C. Sherrington and E. Khoshdel, Synthesis and characterization of micrometer-sized molecularly imprinted spherical polymer particulates prepared via precipitation polymerization, Pure Appl. Chem. 79 (2007) 1505-1519; DOI: 10.1351/pac200779091505.10.1351/pac200779091505Search in Google Scholar

16. G. Pan, Q. Guo, C. Cao, H. Yang and B. Li, Thermo-responsive molecularly imprinted nanogels for specific recognition and controlled release of proteins, Soft Matter 9 (2013) 3840-3850; DOI: 10.1039/C3SM27505A.10.1039/c3sm27505aSearch in Google Scholar

17. S. Chaitidou, O. Kotrotsiou, K. Kotti, O. Kammona, M. Bukhari and C. Kiparissides, Precipitation polymerization for the synthesis of nanostructured particles, Mater. Sci. Eng. B 152 (2008) 55-59; DOI: 10.1016/j.mseb.2008.06.024.10.1016/j.mseb.2008.06.024Search in Google Scholar

18. J. D. Carter, S. B. Dula, K. L. Corbin, R. Wu and C. S. Nunemaker, A practical guide to rodent islet isolation and assessment, Biol. Proced. Online 11 (2009) 3-31; DOI: 10.1007/s12575-009-9021-0.10.1007/s12575-009-9021-0305605219957062Search in Google Scholar

19. H. He, D. Xiao, J. He, H. Li, H. He, H. Dai and J. Peng, Preparation of a core-shell magnetic ionimprinted polymer via a sol-gel process for selective extraction of Cu (ii) from herbal medicines, Analyst 139 (2014) 2459-2466; DOI: 10.1039/c3an02096g.10.1039/C3AN02096GSearch in Google Scholar

20. S. Sajeesh, K. Bouchemal, V. Marsaud, C. Vauthier and C. P. Sharma, Cyclodextrin complexed insulin encapsulated hydrogel microparticles: An oral delivery system for insulin, J. Control. Release 147 (2010) 377-384; DOI: 10.1016/j.jconrel.2010.08.007.10.1016/j.jconrel.2010.08.00720727924Search in Google Scholar

21. A. Cilek, N. Celebi, F. Tırnaksız and A. Tay, A lecithin-based microemulsion of rh-insulin with aprotinin for oral administration: Investigation of hypoglycemic effects in non-diabetic and STZinduced diabetic rats, Int. J. Pharm. 298 (2005) 176-185; DOI: 10.1016/j.ijpharm.2005.04.016.10.1016/j.ijpharm.2005.04.01615950411Search in Google Scholar

22. W. Ritschel, G. Ritschel, B. Ritschel and P. Lücker, Rectal delivery system for insulin, Methods Find. Exp. Clin. Pharmacol. 10 (1988) 645-656.Search in Google Scholar

23. M. P. Desai, V. Labhasetwar, G. L. Amidon and R. J. Levy, Gastrointestinal uptake of biodegradable microparticles: effect of particle size, Pharm. Res. 13 (1996) 1838-1845.Search in Google Scholar

24. I. Stützer, D. Esterházy and M. Stoffel, The pancreatic beta cell surface proteome, Diabetologia 55 (2012) 1877-1889; DOI: 10.1007/s00125-012-2531-3.10.1007/s00125-012-2531-3336913722460761Search in Google Scholar

25. M. García-Díaz, C. Foged and H. M. Nielsen, Improved insulin loading in poly (lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids, Int. J. Pharm. 482 (2015) 84-91; DOI: 10.1016/j.ijpharm.2014.11.047.10.1016/j.ijpharm.2014.11.04725445991Search in Google Scholar

26. T. Andreani, A. L. R. de Souza, C. P. Kiill, E. N. Lorenzon, J. F. Fangueiro, A. C. Calpena, M. V. Chaud, M. L. Garcia, M. P. D. Gremião and A. M. Silva, Preparation and characterization of PEGcoated silica nanoparticles for oral insulin delivery, Int. J. Pharm. 473 (2014) 627-635; DOI: 10.1016/j.ijpharm.2014.07.049.10.1016/j.ijpharm.2014.07.04925089510Search in Google Scholar

27. B. C. Tang, M. Dawson, S. K. Lai, Y.-Y. Wang, J. S. Suk, M. Yang, P. Zeitlin, M. P. Boyle, J. Fu and J. Hanes, Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 19268-19273; DOI: 10.1073/pnas.0905998106.10.1073/pnas.0905998106278080419901335Search in Google Scholar

28. P. de Sousa Irene, M. Thomas, S. Corinna, F. Barbara and B.-S. Andreas, Insulin loaded mucus permeating nanoparticles: Addressing the surface characteristics as feature to improve mucus permeation, Int. J. Pharm. (2016); DOI: 10.1016/j.ijpharm.2016.01.022.10.1016/j.ijpharm.2016.01.02226802494Search in Google Scholar

29. K. Rostamizadeh, H. Abdollahi and C. Parsajoo, Synthesis, optimization, and characterization of molecularly imprinted nanoparticles, Int. Nano Lett. 3 (2013) 1-9; DOI: 10.1186/2228-5326-3-20.10.1186/2228-5326-3-20Search in Google Scholar

30. V. P. Drachev, M. D. Thoreson, E. N. Khaliullin, V. J. Davisson and V. M. Shalaev, Surface-enhanced Raman difference between human insulin and insulin lispro detected with adaptive nanostructures, J. Phys. Chem. B 108 (2004) 18046-18052; DOI: 10.1021/jp047254h.10.1021/jp047254hSearch in Google Scholar

31. H. Zeng, Y. Wang, X. Liu, J. Kong and C. Nie, Preparation of molecular imprinted polymers using bi-functional monomer and bi-crosslinker for solid-phase extraction of rutin, Talanta 93 (2012) 172-181; DOI: 10.1016/j.talanta.2012.02.008.10.1016/j.talanta.2012.02.00822483895Search in Google Scholar

32. L. Xu, Y.-A. Huang, Q.-J. Zhu and C. Ye, Chitosan in molecularly-imprinted polymers: Current and Future Prospects, Int. J. Mol. Sci. 16 (2015) 18328-18347; DOI: 10.3390/ijms160818328.10.3390/ijms160818328458124826262607Search in Google Scholar

33. M. Odabaşi, R. Say and A. Denizli, Molecular imprinted particles for lysozyme purification, Mater. Sci. Eng. C 27 (2007) 90-99; DOI: 10.1016/j.msec.2006.03.002.10.1016/j.msec.2006.03.002Search in Google Scholar

34. S. Scorrano, L. Mergola, R. Del Sole and G. Vasapollo, Synthesis of molecularly imprinted polymers for amino acid derivates by using different functional monomers, Int. J. Mol. Sci. 12 (2011) 1735-1743; DOI: 10.3390/ijms12031735.10.3390/ijms12031735311163021673919Search in Google Scholar

35. M. R. Avadi, A. M. M. Sadeghi, N. Mohammadpour, S. Abedin, F. Atyabi, R. Dinarvand and M. Rafiee-Tehrani, Preparation and characterization of insulin nanoparticles using chitosan and arabic gum with ionic gelation method, Nanomedicine 6 (2010) 58-63; DOI: 10.1016/j.nano.2009.04.007.10.1016/j.nano.2009.04.00719447202Search in Google Scholar

36. C. Ferrero, D. Massuelle and E. Doelker, Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. II. Evaluation of a possible swellingcontrolled drug release mechanism using dimensionless analysis, J. Control. Release 141 (2010) 223-233; DOI: 10.1016/j.jconrel.2009.09.011.10.1016/j.jconrel.2009.09.01119766681Search in Google Scholar

37. S. Li, A. Tiwari, Y. Ge and D. Fei, A pH-responsive, low crosslinked, molecularly imprinted insulin delivery system, Adv. Mater. Lett. 1 (2010) 4-10; DOI: 10.5185/amlett.2010.4110.10.5185/amlett.2010.4110Search in Google Scholar

38. E. Lee, K. Kim, M. Choi, Y. Lee, J.-W. Park and B. Kim, Development of smart delivery system for ascorbic acid using pH-responsive P (MAA-co-EGMA) hydrogel microparticles, Drug Deliv. 17 (2010) 573-580; DOI: 10.3109/10717544.2010.500636.10.3109/10717544.2010.50063620626233Search in Google Scholar

39. Y. Hoshino, T. Urakami, H. Koido and K. J. Shea, Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: A plastic antibody, J. Am. Chem. Soc. 132 (2010) 6644-6645; DOI: 10.1021/ja102148f.10.1021/ja102148f287482420420394Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo