Black cotton soil treated with up to 24% metakaolin (MCL) content was prepared by molding water contents of −2, 0, 2, 4 and 6% of optimum moisture content (OMC) and compacted with British Standard Light (BSL) and West African Standard (WAS) or ‘Intermediate’ energies. The specimens were extruded from the compaction molds and allowed to air dry in a laboratory in order to assess the effect of desiccation-induced shrinkage on the compacted mix for use as a hydraulic barrier in a waste containment application. The results recorded show that the volumetric shrinkage strain (VSS) values were large within the first 10 days of drying; the VSS values increased with a higher molding of the water content, relative to the OMC. The VSS generally increased with a higher initial degree of saturation for the two compactive efforts, irrespective of the level of MCL treatment. Generally, the VSS decreased with an increasing MCL content. Only specimens treated with a minimum 20% MCL content and compacted with the WAS energy satisfied the regulatory maximum VSS of 4% for use as a hydraulic barrier.
This study utilized Spatial Information Technology (SIT) such as Remote Sensing (RS), a Geographical Information System (GIS), the Global Positioning System (GPS) and a high-resolution Digital Elevation Model (DEM) for a morphometrical analysis of five sub-basins within the Lower Niger River Basin, Nigeria. Morpho-metrical parameters, such as the total relief, relative relief, relief ratio, ruggedness number, texture ratio, elongation ratio, circularity ratio, form factor ratio, drainage density, stream frequency, sinuosity factor and bifurcation ratio, have been computed and analyzed. The study revealed that the contribution of the morphometric parameters to flooding suggest catchment No. 1 has the least concentration time and the highest runoff depth. Catchment No. 4 has the highest circularity ratio (0.35) as the most hazardous site where floods could reach a great volume over a small area.
Nanotechnology-based materials have previously been used by space research, pharmaceuticals and electronics, but in the last decade several nanotechnology-based thermal insulation materials have appeared in building industry. Nowadays they only feature in a narrow range of practice, but they offer many potential applications. These options are unknown to most architects, who may simply be afraid of these materials owing to the incomplete and often contradictory special literature. Therefore, they are distrustful and prefer to apply the usual and conventional technologies. This article is intended to provide basic information about nanotechnology-based thermal insulation materials for designers. It describes their most important material properties, functional principles, applications, and potential usage options in building construction.
The single most reliable indicator of a material’s durability is its performance in long-term tests, which cannot always be carried out due to a limited time budget. The second option is to perform some kind of accelerated durability tests. The aim of the work described in this article was to develop a method for the accelerated durability testing of binders. It was decided that the Arrhenius equation approach and the theory of chemical reaction kinetics would be applied in this case. The degradation process has been simplified to a single quantifiable parameter, which became compressive strength. A model hydraulic binder based on fluidised bed combustion ash (FBC ash) was chosen as the test subject for the development of the method. The model binder and its hydration products were tested by high-temperature X-ray diffraction analysis. The main hydration product of this binder was ettringite. Due to the thermodynamic instability of this mineral, it was possible to verify the proposed method via long term testing. In order to accelerate the chemical reactions in the binder, four combinations of two temperatures (65 and 85°C) and two different relative humidities (14 and 100%) were used. The upper temperature limit was chosen because of the results of the high-temperature x-ray testing of the ettringite’s decomposition. The calculation formulae for the accelerated durability tests were derived on the basis of data regarding the decrease in compressive strength under the conditions imposed by the four above-mentioned combinations. The mineralogical composition of the binder after degradation was also described. The final degradation product was gypsum under dry conditions and monosulphate under wet conditions. The validity of the method and formula was subsequently verified by means of long-term testing. A very good correspondence between the calculated and real values was achieved. The deviation of these values did not exceed 5 %. The designed and verified method does not also consider the influence of other effects, for instance, chemical corrosion or corrosion caused by frost-thaw cycles. However, this method could be a supplementary tool applicable to the study of degradation processes and the estimation of a binder´s durability as well.
The aim of this paper is to demonstrate the behavior of reinforced elastomeric bearings under various loads. They are made of special types of bearings. The experimental verification of these special bearings has been tested on various types of loading. The results of the experimental measurements are compared with the results of the numerical modeling and calculations according to the standard assumptions in STN EN 1337-3. In the conclusion, the results are summarized for the selected types of bearings.
Black cotton soil treated with up to 24% metakaolin (MCL) content was prepared by molding water contents of −2, 0, 2, 4 and 6% of optimum moisture content (OMC) and compacted with British Standard Light (BSL) and West African Standard (WAS) or ‘Intermediate’ energies. The specimens were extruded from the compaction molds and allowed to air dry in a laboratory in order to assess the effect of desiccation-induced shrinkage on the compacted mix for use as a hydraulic barrier in a waste containment application. The results recorded show that the volumetric shrinkage strain (VSS) values were large within the first 10 days of drying; the VSS values increased with a higher molding of the water content, relative to the OMC. The VSS generally increased with a higher initial degree of saturation for the two compactive efforts, irrespective of the level of MCL treatment. Generally, the VSS decreased with an increasing MCL content. Only specimens treated with a minimum 20% MCL content and compacted with the WAS energy satisfied the regulatory maximum VSS of 4% for use as a hydraulic barrier.
This study utilized Spatial Information Technology (SIT) such as Remote Sensing (RS), a Geographical Information System (GIS), the Global Positioning System (GPS) and a high-resolution Digital Elevation Model (DEM) for a morphometrical analysis of five sub-basins within the Lower Niger River Basin, Nigeria. Morpho-metrical parameters, such as the total relief, relative relief, relief ratio, ruggedness number, texture ratio, elongation ratio, circularity ratio, form factor ratio, drainage density, stream frequency, sinuosity factor and bifurcation ratio, have been computed and analyzed. The study revealed that the contribution of the morphometric parameters to flooding suggest catchment No. 1 has the least concentration time and the highest runoff depth. Catchment No. 4 has the highest circularity ratio (0.35) as the most hazardous site where floods could reach a great volume over a small area.
Nanotechnology-based materials have previously been used by space research, pharmaceuticals and electronics, but in the last decade several nanotechnology-based thermal insulation materials have appeared in building industry. Nowadays they only feature in a narrow range of practice, but they offer many potential applications. These options are unknown to most architects, who may simply be afraid of these materials owing to the incomplete and often contradictory special literature. Therefore, they are distrustful and prefer to apply the usual and conventional technologies. This article is intended to provide basic information about nanotechnology-based thermal insulation materials for designers. It describes their most important material properties, functional principles, applications, and potential usage options in building construction.
The single most reliable indicator of a material’s durability is its performance in long-term tests, which cannot always be carried out due to a limited time budget. The second option is to perform some kind of accelerated durability tests. The aim of the work described in this article was to develop a method for the accelerated durability testing of binders. It was decided that the Arrhenius equation approach and the theory of chemical reaction kinetics would be applied in this case. The degradation process has been simplified to a single quantifiable parameter, which became compressive strength. A model hydraulic binder based on fluidised bed combustion ash (FBC ash) was chosen as the test subject for the development of the method. The model binder and its hydration products were tested by high-temperature X-ray diffraction analysis. The main hydration product of this binder was ettringite. Due to the thermodynamic instability of this mineral, it was possible to verify the proposed method via long term testing. In order to accelerate the chemical reactions in the binder, four combinations of two temperatures (65 and 85°C) and two different relative humidities (14 and 100%) were used. The upper temperature limit was chosen because of the results of the high-temperature x-ray testing of the ettringite’s decomposition. The calculation formulae for the accelerated durability tests were derived on the basis of data regarding the decrease in compressive strength under the conditions imposed by the four above-mentioned combinations. The mineralogical composition of the binder after degradation was also described. The final degradation product was gypsum under dry conditions and monosulphate under wet conditions. The validity of the method and formula was subsequently verified by means of long-term testing. A very good correspondence between the calculated and real values was achieved. The deviation of these values did not exceed 5 %. The designed and verified method does not also consider the influence of other effects, for instance, chemical corrosion or corrosion caused by frost-thaw cycles. However, this method could be a supplementary tool applicable to the study of degradation processes and the estimation of a binder´s durability as well.
The aim of this paper is to demonstrate the behavior of reinforced elastomeric bearings under various loads. They are made of special types of bearings. The experimental verification of these special bearings has been tested on various types of loading. The results of the experimental measurements are compared with the results of the numerical modeling and calculations according to the standard assumptions in STN EN 1337-3. In the conclusion, the results are summarized for the selected types of bearings.