Journal & Issues

Volume 31 (2023): Issue 1 (March 2023)

Volume 30 (2022): Issue 4 (December 2022)

Volume 30 (2022): Issue 3 (September 2022)

Volume 30 (2022): Issue 2 (June 2022)

Volume 30 (2022): Issue 1 (March 2022)

Volume 29 (2021): Issue 4 (December 2021)

Volume 29 (2021): Issue 3 (September 2021)

Volume 29 (2021): Issue 2 (June 2021)

Volume 29 (2021): Issue 1 (March 2021)

Volume 28 (2020): Issue 4 (December 2020)

Volume 28 (2020): Issue 3 (September 2020)

Volume 28 (2020): Issue 2 (June 2020)

Volume 28 (2020): Issue 1 (March 2020)

Volume 27 (2019): Issue 4 (December 2019)

Volume 27 (2019): Issue 3 (September 2019)

Volume 27 (2019): Issue 2 (June 2019)

Volume 27 (2019): Issue 1 (March 2019)

Volume 26 (2018): Issue 4 (December 2018)

Volume 26 (2018): Issue 3 (September 2018)

Volume 26 (2018): Issue 2 (June 2018)

Volume 26 (2018): Issue 1 (March 2018)

Volume 25 (2017): Issue 4 (December 2017)

Volume 25 (2017): Issue 3 (September 2017)

Volume 25 (2017): Issue 2 (June 2017)

Volume 25 (2017): Issue 1 (March 2017)

Volume 24 (2016): Issue 4 (December 2016)

Volume 24 (2016): Issue 3 (September 2016)

Volume 24 (2016): Issue 2 (June 2016)

Volume 24 (2016): Issue 1 (March 2016)

Volume 23 (2015): Issue 4 (December 2015)

Volume 23 (2015): Issue 3 (September 2015)

Volume 23 (2015): Issue 2 (June 2015)

Volume 23 (2015): Issue 1 (March 2015)

Volume 22 (2014): Issue 4 (December 2014)

Volume 22 (2014): Issue 3 (September 2014)

Volume 22 (2014): Issue 2 (June 2014)

Volume 22 (2014): Issue 1 (March 2014)

Volume 21 (2013): Issue 4 (December 2013)

Volume 21 (2013): Issue 3 (September 2013)

Volume 21 (2013): Issue 2 (June 2013)

Volume 21 (2013): Issue 1 (March 2013)

Volume 20 (2012): Issue 4 (December 2012)

Volume 20 (2012): Issue 3 (September 2012)

Volume 20 (2012): Issue 2 (June 2012)

Volume 20 (2012): Issue 1 (March 2012)

Volume 19 (2011): Issue 4 (December 2011)

Volume 19 (2011): Issue 3 (September 2011)

Volume 19 (2011): Issue 2 (June 2011)

Volume 19 (2011): Issue 1 (March 2011)

Volume 18 (2010): Issue 4 (December 2010)

Volume 18 (2010): Issue 3 (September 2010)

Volume 18 (2010): Issue 2 (June 2010)

Volume 18 (2010): Issue 1 (March 2010)

Journal Details
Format
Journal
eISSN
1338-3973
ISSN
1210-3896
First Published
23 May 1993
Publication timeframe
4 times per year
Languages
English

Search

Volume 24 (2016): Issue 1 (March 2016)

Journal Details
Format
Journal
eISSN
1338-3973
ISSN
1210-3896
First Published
23 May 1993
Publication timeframe
4 times per year
Languages
English

Search

5 Articles
Open Access

Desiccation-Induced Volumetric Shrinkage of Compacted Metakaolin-Treated Black Cotton Soil for a Hydraulic Barriers System

Published Online: 18 Apr 2016
Page range: 1 - 5

Abstract

Abstract

Black cotton soil treated with up to 24% metakaolin (MCL) content was prepared by molding water contents of −2, 0, 2, 4 and 6% of optimum moisture content (OMC) and compacted with British Standard Light (BSL) and West African Standard (WAS) or ‘Intermediate’ energies. The specimens were extruded from the compaction molds and allowed to air dry in a laboratory in order to assess the effect of desiccation-induced shrinkage on the compacted mix for use as a hydraulic barrier in a waste containment application. The results recorded show that the volumetric shrinkage strain (VSS) values were large within the first 10 days of drying; the VSS values increased with a higher molding of the water content, relative to the OMC. The VSS generally increased with a higher initial degree of saturation for the two compactive efforts, irrespective of the level of MCL treatment. Generally, the VSS decreased with an increasing MCL content. Only specimens treated with a minimum 20% MCL content and compacted with the WAS energy satisfied the regulatory maximum VSS of 4% for use as a hydraulic barrier.

Keywords

  • Black cotton soil
  • Compactive effort
  • Desiccation
  • Metakaolin
  • Volumetric shrinkage strain
Open Access

Morphometrical Analysis and Peak Runoff Estimation for the Sub-Lower Niger River Basin, Nigeria

Published Online: 18 Apr 2016
Page range: 6 - 16

Abstract

Abstract

This study utilized Spatial Information Technology (SIT) such as Remote Sensing (RS), a Geographical Information System (GIS), the Global Positioning System (GPS) and a high-resolution Digital Elevation Model (DEM) for a morphometrical analysis of five sub-basins within the Lower Niger River Basin, Nigeria. Morpho-metrical parameters, such as the total relief, relative relief, relief ratio, ruggedness number, texture ratio, elongation ratio, circularity ratio, form factor ratio, drainage density, stream frequency, sinuosity factor and bifurcation ratio, have been computed and analyzed. The study revealed that the contribution of the morphometric parameters to flooding suggest catchment No. 1 has the least concentration time and the highest runoff depth. Catchment No. 4 has the highest circularity ratio (0.35) as the most hazardous site where floods could reach a great volume over a small area.

Keywords

  • Digital Elevation Model
  • Drainage Network
  • Morphometrical Parameters
  • River Basin
  • Spatial Information Technology
  • Sustainable Development
Open Access

Application of Nanotechnology-Based Thermal Insulation Materials in Building Construction

Published Online: 18 Apr 2016
Page range: 17 - 23

Abstract

Abstract

Nanotechnology-based materials have previously been used by space research, pharmaceuticals and electronics, but in the last decade several nanotechnology-based thermal insulation materials have appeared in building industry. Nowadays they only feature in a narrow range of practice, but they offer many potential applications. These options are unknown to most architects, who may simply be afraid of these materials owing to the incomplete and often contradictory special literature. Therefore, they are distrustful and prefer to apply the usual and conventional technologies. This article is intended to provide basic information about nanotechnology-based thermal insulation materials for designers. It describes their most important material properties, functional principles, applications, and potential usage options in building construction.

Keywords

  • Nanotechnology
  • thermal insulation material
  • building construction
Open Access

Method for the Accelerated Testing of the Durability of a Construction Binder using the Arrhenius Approach

Published Online: 18 Apr 2016
Page range: 24 - 33

Abstract

Abstract

The single most reliable indicator of a material’s durability is its performance in long-term tests, which cannot always be carried out due to a limited time budget. The second option is to perform some kind of accelerated durability tests. The aim of the work described in this article was to develop a method for the accelerated durability testing of binders. It was decided that the Arrhenius equation approach and the theory of chemical reaction kinetics would be applied in this case. The degradation process has been simplified to a single quantifiable parameter, which became compressive strength. A model hydraulic binder based on fluidised bed combustion ash (FBC ash) was chosen as the test subject for the development of the method. The model binder and its hydration products were tested by high-temperature X-ray diffraction analysis. The main hydration product of this binder was ettringite. Due to the thermodynamic instability of this mineral, it was possible to verify the proposed method via long term testing. In order to accelerate the chemical reactions in the binder, four combinations of two temperatures (65 and 85°C) and two different relative humidities (14 and 100%) were used. The upper temperature limit was chosen because of the results of the high-temperature x-ray testing of the ettringite’s decomposition. The calculation formulae for the accelerated durability tests were derived on the basis of data regarding the decrease in compressive strength under the conditions imposed by the four above-mentioned combinations. The mineralogical composition of the binder after degradation was also described. The final degradation product was gypsum under dry conditions and monosulphate under wet conditions. The validity of the method and formula was subsequently verified by means of long-term testing. A very good correspondence between the calculated and real values was achieved. The deviation of these values did not exceed 5 %. The designed and verified method does not also consider the influence of other effects, for instance, chemical corrosion or corrosion caused by frost-thaw cycles. However, this method could be a supplementary tool applicable to the study of degradation processes and the estimation of a binder´s durability as well.

Keywords

  • Arrheniusapproach
  • Accelerated testing
  • Durability
  • Hydraulic binders
  • Hydration
Open Access

Interaction of Reinforced Elastomeric Bearings in Bridge Construction

Published Online: 18 Apr 2016
Page range: 34 - 40

Abstract

Abstract

The aim of this paper is to demonstrate the behavior of reinforced elastomeric bearings under various loads. They are made of special types of bearings. The experimental verification of these special bearings has been tested on various types of loading. The results of the experimental measurements are compared with the results of the numerical modeling and calculations according to the standard assumptions in STN EN 1337-3. In the conclusion, the results are summarized for the selected types of bearings.

Keywords

  • Bridgebearings
  • elastomer
  • modulus of elasticity
  • reinforcing plates
5 Articles
Open Access

Desiccation-Induced Volumetric Shrinkage of Compacted Metakaolin-Treated Black Cotton Soil for a Hydraulic Barriers System

Published Online: 18 Apr 2016
Page range: 1 - 5

Abstract

Abstract

Black cotton soil treated with up to 24% metakaolin (MCL) content was prepared by molding water contents of −2, 0, 2, 4 and 6% of optimum moisture content (OMC) and compacted with British Standard Light (BSL) and West African Standard (WAS) or ‘Intermediate’ energies. The specimens were extruded from the compaction molds and allowed to air dry in a laboratory in order to assess the effect of desiccation-induced shrinkage on the compacted mix for use as a hydraulic barrier in a waste containment application. The results recorded show that the volumetric shrinkage strain (VSS) values were large within the first 10 days of drying; the VSS values increased with a higher molding of the water content, relative to the OMC. The VSS generally increased with a higher initial degree of saturation for the two compactive efforts, irrespective of the level of MCL treatment. Generally, the VSS decreased with an increasing MCL content. Only specimens treated with a minimum 20% MCL content and compacted with the WAS energy satisfied the regulatory maximum VSS of 4% for use as a hydraulic barrier.

Keywords

  • Black cotton soil
  • Compactive effort
  • Desiccation
  • Metakaolin
  • Volumetric shrinkage strain
Open Access

Morphometrical Analysis and Peak Runoff Estimation for the Sub-Lower Niger River Basin, Nigeria

Published Online: 18 Apr 2016
Page range: 6 - 16

Abstract

Abstract

This study utilized Spatial Information Technology (SIT) such as Remote Sensing (RS), a Geographical Information System (GIS), the Global Positioning System (GPS) and a high-resolution Digital Elevation Model (DEM) for a morphometrical analysis of five sub-basins within the Lower Niger River Basin, Nigeria. Morpho-metrical parameters, such as the total relief, relative relief, relief ratio, ruggedness number, texture ratio, elongation ratio, circularity ratio, form factor ratio, drainage density, stream frequency, sinuosity factor and bifurcation ratio, have been computed and analyzed. The study revealed that the contribution of the morphometric parameters to flooding suggest catchment No. 1 has the least concentration time and the highest runoff depth. Catchment No. 4 has the highest circularity ratio (0.35) as the most hazardous site where floods could reach a great volume over a small area.

Keywords

  • Digital Elevation Model
  • Drainage Network
  • Morphometrical Parameters
  • River Basin
  • Spatial Information Technology
  • Sustainable Development
Open Access

Application of Nanotechnology-Based Thermal Insulation Materials in Building Construction

Published Online: 18 Apr 2016
Page range: 17 - 23

Abstract

Abstract

Nanotechnology-based materials have previously been used by space research, pharmaceuticals and electronics, but in the last decade several nanotechnology-based thermal insulation materials have appeared in building industry. Nowadays they only feature in a narrow range of practice, but they offer many potential applications. These options are unknown to most architects, who may simply be afraid of these materials owing to the incomplete and often contradictory special literature. Therefore, they are distrustful and prefer to apply the usual and conventional technologies. This article is intended to provide basic information about nanotechnology-based thermal insulation materials for designers. It describes their most important material properties, functional principles, applications, and potential usage options in building construction.

Keywords

  • Nanotechnology
  • thermal insulation material
  • building construction
Open Access

Method for the Accelerated Testing of the Durability of a Construction Binder using the Arrhenius Approach

Published Online: 18 Apr 2016
Page range: 24 - 33

Abstract

Abstract

The single most reliable indicator of a material’s durability is its performance in long-term tests, which cannot always be carried out due to a limited time budget. The second option is to perform some kind of accelerated durability tests. The aim of the work described in this article was to develop a method for the accelerated durability testing of binders. It was decided that the Arrhenius equation approach and the theory of chemical reaction kinetics would be applied in this case. The degradation process has been simplified to a single quantifiable parameter, which became compressive strength. A model hydraulic binder based on fluidised bed combustion ash (FBC ash) was chosen as the test subject for the development of the method. The model binder and its hydration products were tested by high-temperature X-ray diffraction analysis. The main hydration product of this binder was ettringite. Due to the thermodynamic instability of this mineral, it was possible to verify the proposed method via long term testing. In order to accelerate the chemical reactions in the binder, four combinations of two temperatures (65 and 85°C) and two different relative humidities (14 and 100%) were used. The upper temperature limit was chosen because of the results of the high-temperature x-ray testing of the ettringite’s decomposition. The calculation formulae for the accelerated durability tests were derived on the basis of data regarding the decrease in compressive strength under the conditions imposed by the four above-mentioned combinations. The mineralogical composition of the binder after degradation was also described. The final degradation product was gypsum under dry conditions and monosulphate under wet conditions. The validity of the method and formula was subsequently verified by means of long-term testing. A very good correspondence between the calculated and real values was achieved. The deviation of these values did not exceed 5 %. The designed and verified method does not also consider the influence of other effects, for instance, chemical corrosion or corrosion caused by frost-thaw cycles. However, this method could be a supplementary tool applicable to the study of degradation processes and the estimation of a binder´s durability as well.

Keywords

  • Arrheniusapproach
  • Accelerated testing
  • Durability
  • Hydraulic binders
  • Hydration
Open Access

Interaction of Reinforced Elastomeric Bearings in Bridge Construction

Published Online: 18 Apr 2016
Page range: 34 - 40

Abstract

Abstract

The aim of this paper is to demonstrate the behavior of reinforced elastomeric bearings under various loads. They are made of special types of bearings. The experimental verification of these special bearings has been tested on various types of loading. The results of the experimental measurements are compared with the results of the numerical modeling and calculations according to the standard assumptions in STN EN 1337-3. In the conclusion, the results are summarized for the selected types of bearings.

Keywords

  • Bridgebearings
  • elastomer
  • modulus of elasticity
  • reinforcing plates