The undrained shear strength (Su) and cohesion (Cu) of cohesive soils are frequently determined using an unconfined compression test. However, the test results are heavily dependent on specimen size. This causes uncertainty in geotechnical analyses, constitutive models, and designs by overestimating or underestimating the shear strength of cohesive soils. Therefore, the study aims to assess the effect of the height-to-diameter ratio on the unconfined compressive strength (UCS) of cohesive soil. The soil specimen was tested on a compacted cylindrical specimen at the maximum dry density and optimum moisture content with a height to diameter (H/D) ratio of 1–3 for 38, 50, and 100 mm specimen diameters. Disturbed sample specimens were considered for the laboratory program. Accordingly, the standard Proctor compaction test determines soil classification and compaction characteristics. The unconfined compression test was performed for undisturbed and compacted remolded states of various diameters of cohesive soil specimens to investigate the strength variation with the specimen variation in H/D ratio. The laboratory test results revealed that cohesive soil's unconfined compression strength value drops rapidly with height-to-diameter ratios and the soil specimens’ diameter increases. However, the UCS value was stable at H/D ratio from 1.75 to 2.25. As the specimens’ diameter and H/D ratio increased, the peak UCS value axial strain decreased. Similarly, the gap between the axial strains of peak UCS value for the smallest and the most significant H/D ratio decreased with increase in the specimens’ diameter.
The article presents a prototype steel–concrete bridge with the results of trial load tests. In the design of the structure, new approaches were used, the so-called concept of a hybrid cross section. The obtained results were interpreted against the background of theoretical analysis performed and the experience of the behavior of the existing standard bridge structures. The obtained results are to be the starting point for the development of methods of calculating this type of structure, with particular emphasis on the degree of cracking of the concrete part of the structure. The paper is intended to be a starting point for demonstrating that it is possible to calculate longitudinal shear in the fatigue limit state (of steel dowels) differently than in the fully cracked section. Similarly, it is supposed to be a point of discussion on how to perform a global analysis of hybrid systems.
The purpose of the study was to determine the geotechnical properties of peat and relate them to the fibre content. Peat soil tested in this study was collected from the peatland in the north-eastern Poland, 250 km north-east of Warsaw. Peat samples were taken from eight different depths below the ground surface over an area of approximately 2500 m2. The research programme consisted of laboratory tests of the physical properties of peat and compressibility tests conducted in oedometers. Tests were performed in accordance with the current international and European standards using specialised research equipment. Based on the degree of decomposition, peat was divided into fibric (with more than 66% of fibres), hemic (fibre content from 33% to 66%) and sapric (less than 33% of plant fibres). The bulk and particle densities, natural water content, organic content, initial void ratio and the degree of decomposition were investigated as the physical properties of peat. Based on the oedometer tests, the constrained modulus, compression and secondary compression indexes were determined. It was concluded that the fibric peat is characterised by the lowest bulk and particle densities, the highest water and organic contents, void ratio and compressibility in comparison to hemic and sapric peat. The characteristics of peat have been related to the results presented in the literature.
Methane and coal dust explosions are among the most common causes of disasters in hard coal mining. Therefore, it is important for occupational safety in hard coal mines operating under methane and coal dust explosion hazards to identify possible ignition sources, whether due to natural or technical factors. One technical source of ignition can be mechanical sparks generated during operation of mechanical equipment and high surface temperatures of equipment components during operation. This paper presents the methodology and results of thermal imaging and strength testing of roadway support elements under dynamic loading. The goal of the tests was to identify the potential explosive atmosphere ignition sources during the operation of the support under the conditions of rock bursts. The scope of testing encompassed the temperature measurements by means of thermal camera of friction prop and yielding support frame sliding joint elements at yield under dynamic impact loading (simulating a burst). Significant joint element heating and mechanical sparking was observed during the testing of arching yielding support frame sliding joints and straight friction prop joints as a result of friction at yield. Some of the aspects defined in standard PN-EN ISO80079-36:2016 include the maximum temperature T max =150°C for a surface that can accumulate a layer of coal dust. Tests of the friction joints have shown that during impact loading, numerous mechanical sparks are produced at the friction joints of sections of the steel prop, with the surface temperature of the sections starting from 169.6°C and reaching up to 234.1°C. During tests it was also to determined emissivites of the tested sliding joints constructed from V29-V32 secrions depending on corrosion products which consist in range 0.842–0.873. Such a high temperature can initiate an explosive mixture consisting of methane, air and coal dust.
The paper presents the temperature field effect on the dynamic stability problem of plates with imperfection. The main objective is to conduct numerical investigations which show the relations between the imperfection ratio and plate dynamic response in a thermal environment. The plate is composed of three layers: thin facings and a thicker core. The plate can be loaded mechanically and thermally or only thermally. The facings are mechanically compressed with the forces acting in a plane. The temperature field model is defined by the temperature difference, which occurs between the plate edges. Two plate models are examined as follows: built using the approximation methods – orthogonalization and finite differences – and composed of finite elements. The analytical and numerical solution procedure is the main one, which is the proposal to perform the problem analysis. The plate reaction is described by the obtained values of the critical temperature differences for plates loaded only thermally and by the critical mechanical loads and the corresponding temperature differences for plates loaded mechanically and subjected to the uncoupled temperature field. The effect of the plate imperfection ratio under time-dependent loads is shown by numerous observations and results, which are shown graphically. The importance of the imperfection ratio on the plate's dynamic stability response in complex loading conditions is studied.
In this study, a novel method is proposed to optimize the reinforced parameters influencing the bearing capacity of a shallow square foundation resting on sandy soil reinforced with geosynthetic. The parameters to be optimized are reinforcement length (L), the number of reinforcement layers (N), the depth of the topmost layer of geosynthetic (U), and the vertical distance between two reinforcement layers (X). To achieve this objective, 25 laboratory small-scale model tests were conducted on reinforced sand. This laboratory-scale model has used two geosynthetics as reinforcement materials and one sandy soil. Firstly, the effect of reinforcement parameters on the bearing load was investigated using the analysis of variance (ANOVA). Both response surface methodology (RSM) and artificial neural networks (ANN) tools were applied and compared to model bearing capacity. Finally, the multiobjective genetic algorithm (MOGA) coupled with RSM and ANN models was used to solve multi objective optimization problems. The design of bearing capacity is considered a multi-objective optimization problem. In this regard, the two conflicting objectives are the need to maximize bearing capacity and minimize the cost. According to the obtained results, an informed decision regarding the design of the bearing capacity of reinforced sand is reached.
The undrained shear strength (Su) and cohesion (Cu) of cohesive soils are frequently determined using an unconfined compression test. However, the test results are heavily dependent on specimen size. This causes uncertainty in geotechnical analyses, constitutive models, and designs by overestimating or underestimating the shear strength of cohesive soils. Therefore, the study aims to assess the effect of the height-to-diameter ratio on the unconfined compressive strength (UCS) of cohesive soil. The soil specimen was tested on a compacted cylindrical specimen at the maximum dry density and optimum moisture content with a height to diameter (H/D) ratio of 1–3 for 38, 50, and 100 mm specimen diameters. Disturbed sample specimens were considered for the laboratory program. Accordingly, the standard Proctor compaction test determines soil classification and compaction characteristics. The unconfined compression test was performed for undisturbed and compacted remolded states of various diameters of cohesive soil specimens to investigate the strength variation with the specimen variation in H/D ratio. The laboratory test results revealed that cohesive soil's unconfined compression strength value drops rapidly with height-to-diameter ratios and the soil specimens’ diameter increases. However, the UCS value was stable at H/D ratio from 1.75 to 2.25. As the specimens’ diameter and H/D ratio increased, the peak UCS value axial strain decreased. Similarly, the gap between the axial strains of peak UCS value for the smallest and the most significant H/D ratio decreased with increase in the specimens’ diameter.
The article presents a prototype steel–concrete bridge with the results of trial load tests. In the design of the structure, new approaches were used, the so-called concept of a hybrid cross section. The obtained results were interpreted against the background of theoretical analysis performed and the experience of the behavior of the existing standard bridge structures. The obtained results are to be the starting point for the development of methods of calculating this type of structure, with particular emphasis on the degree of cracking of the concrete part of the structure. The paper is intended to be a starting point for demonstrating that it is possible to calculate longitudinal shear in the fatigue limit state (of steel dowels) differently than in the fully cracked section. Similarly, it is supposed to be a point of discussion on how to perform a global analysis of hybrid systems.
The purpose of the study was to determine the geotechnical properties of peat and relate them to the fibre content. Peat soil tested in this study was collected from the peatland in the north-eastern Poland, 250 km north-east of Warsaw. Peat samples were taken from eight different depths below the ground surface over an area of approximately 2500 m2. The research programme consisted of laboratory tests of the physical properties of peat and compressibility tests conducted in oedometers. Tests were performed in accordance with the current international and European standards using specialised research equipment. Based on the degree of decomposition, peat was divided into fibric (with more than 66% of fibres), hemic (fibre content from 33% to 66%) and sapric (less than 33% of plant fibres). The bulk and particle densities, natural water content, organic content, initial void ratio and the degree of decomposition were investigated as the physical properties of peat. Based on the oedometer tests, the constrained modulus, compression and secondary compression indexes were determined. It was concluded that the fibric peat is characterised by the lowest bulk and particle densities, the highest water and organic contents, void ratio and compressibility in comparison to hemic and sapric peat. The characteristics of peat have been related to the results presented in the literature.
Methane and coal dust explosions are among the most common causes of disasters in hard coal mining. Therefore, it is important for occupational safety in hard coal mines operating under methane and coal dust explosion hazards to identify possible ignition sources, whether due to natural or technical factors. One technical source of ignition can be mechanical sparks generated during operation of mechanical equipment and high surface temperatures of equipment components during operation. This paper presents the methodology and results of thermal imaging and strength testing of roadway support elements under dynamic loading. The goal of the tests was to identify the potential explosive atmosphere ignition sources during the operation of the support under the conditions of rock bursts. The scope of testing encompassed the temperature measurements by means of thermal camera of friction prop and yielding support frame sliding joint elements at yield under dynamic impact loading (simulating a burst). Significant joint element heating and mechanical sparking was observed during the testing of arching yielding support frame sliding joints and straight friction prop joints as a result of friction at yield. Some of the aspects defined in standard PN-EN ISO80079-36:2016 include the maximum temperature T max =150°C for a surface that can accumulate a layer of coal dust. Tests of the friction joints have shown that during impact loading, numerous mechanical sparks are produced at the friction joints of sections of the steel prop, with the surface temperature of the sections starting from 169.6°C and reaching up to 234.1°C. During tests it was also to determined emissivites of the tested sliding joints constructed from V29-V32 secrions depending on corrosion products which consist in range 0.842–0.873. Such a high temperature can initiate an explosive mixture consisting of methane, air and coal dust.
The paper presents the temperature field effect on the dynamic stability problem of plates with imperfection. The main objective is to conduct numerical investigations which show the relations between the imperfection ratio and plate dynamic response in a thermal environment. The plate is composed of three layers: thin facings and a thicker core. The plate can be loaded mechanically and thermally or only thermally. The facings are mechanically compressed with the forces acting in a plane. The temperature field model is defined by the temperature difference, which occurs between the plate edges. Two plate models are examined as follows: built using the approximation methods – orthogonalization and finite differences – and composed of finite elements. The analytical and numerical solution procedure is the main one, which is the proposal to perform the problem analysis. The plate reaction is described by the obtained values of the critical temperature differences for plates loaded only thermally and by the critical mechanical loads and the corresponding temperature differences for plates loaded mechanically and subjected to the uncoupled temperature field. The effect of the plate imperfection ratio under time-dependent loads is shown by numerous observations and results, which are shown graphically. The importance of the imperfection ratio on the plate's dynamic stability response in complex loading conditions is studied.
In this study, a novel method is proposed to optimize the reinforced parameters influencing the bearing capacity of a shallow square foundation resting on sandy soil reinforced with geosynthetic. The parameters to be optimized are reinforcement length (L), the number of reinforcement layers (N), the depth of the topmost layer of geosynthetic (U), and the vertical distance between two reinforcement layers (X). To achieve this objective, 25 laboratory small-scale model tests were conducted on reinforced sand. This laboratory-scale model has used two geosynthetics as reinforcement materials and one sandy soil. Firstly, the effect of reinforcement parameters on the bearing load was investigated using the analysis of variance (ANOVA). Both response surface methodology (RSM) and artificial neural networks (ANN) tools were applied and compared to model bearing capacity. Finally, the multiobjective genetic algorithm (MOGA) coupled with RSM and ANN models was used to solve multi objective optimization problems. The design of bearing capacity is considered a multi-objective optimization problem. In this regard, the two conflicting objectives are the need to maximize bearing capacity and minimize the cost. According to the obtained results, an informed decision regarding the design of the bearing capacity of reinforced sand is reached.