Published Online: 17 Dec 2015 Page range: 351 - 364
Abstract
Abstract
Codeine, a weak opiate, requires increased pharmacovigilance relating to availability, heterogeneous nature of misuse, dependence and associated harm. A scoping review of literature on codeine was conducted using Arksey & O’Malley’s framework (1). Databases searched included PubMed, EBSCO Host, Science Direct, EMBASE, PsycINFO, Cochrane library and Medline from 1994 to 2014. Follow-up search strategies involved hand searching and searching of pharmaceutical, health, medical and drug related websites. Initial zscreening identified 3,105 articles with 475 meeting the inclusion criteria. Eight broad categories organised the literature, data charting and qualitative synthesis. This paper presents implications for practice and makes recommendations to address these issues. Themes identified relate to raising public and practitioner awareness, risk management, dispensing practices and monitoring and surveillance of codeine. Evidence to inform law enforcement, drug surveillance, public health initiatives, harm reduction approaches, pharmacy, clinical and treatment practices is warranted.
Published Online: 17 Dec 2015 Page range: 365 - 382
Abstract
Abstract
This study was aimed at developing risperidone oral disintegrating mini-tablets (OD-mini-tablets) as age-appropriate formulations and to assess their suitability for infants and pediatric use. An experimental Box-Behnken design was applied to assure high quality of the OD-mini-tablets and reduce product variability. The design was employed to understand the influence of the critical excipient combinations on the production of OD-mini-tablets and thus guarantee the feasibility of obtaining products with dosage form uniformity. The variables selected were mannitol percent in Avicel (X1), swelling pressure of the superdisintegrant (X2), and the surface area of Aerosil as a glidant (X3). Risperidone-excipient compatibilities were investigated using FTIR and the spectra did not display any interaction. Fifteen formulations were prepared and evaluated for preand post-compression characteristics. The prepared ODmini- tablet batches were also assessed for disintegration in simulated salivary fluid (SSF, pH 6.2) and in reconstituted skimmed milk. The optimized formula fulfilled the requirements for crushing strength of 5 kN with minimal friability, disintegration times of 8.4 and 53.7 s in SSF and skimmed milk, respectively. This study therefore proposes the risperidone OD-mini-tablet formula having robust mechanical properties, uniform and precise dosing of medication with short disintegration time suitable for pediatric use.
Published Online: 17 Dec 2015 Page range: 383 - 397
Abstract
Abstract
During the past few years, the studies of bi- and multi-layered tablets increased due to the consumption of several different drugs per day by a patient and requests for appropriate patient compliance. The demographic shift toward older population increases the use of combination therapy as polypharmacy. Hydrochlorothiazide (HCTZ), as a model drug, is most commonly used in the treatment of hypertension, congestive heart failure and as a diuretic. The aim of the present study is to investigate the effect of the local environment on dissolution and stability behaviour of HCTZ in fixed multilayered tablet combinations, which are commonly used in polypharmacy. For this purposes, three different systems were introduced: (i) two conventional tablets (HCTZ and pH modifying placebo), (ii) 2-layer tablets (HCTZ, pH modifying placebo) and (iii) 3-layer tablets (HCTZ, barrier and pH modifying placebo). Disintegration of tablets, dissolution of HCTZ from tablets and HCTZ related substances were monitored for all systems. Results showed that there was a significant difference between dissolution profiles of the conventional two-tablet system (HCTZ tablet and pH modifying tablet) and the 2-layer and 3-layer tablets, which include the pH modifying layer. In the case of the conventional two-tablets system, 85 % of HCTZ was dissolved in less than 15 minutes. The dissolution profiles of HCTZ from 2-layered and 3-layered tablets showed a decrease in the dissolution rate. In addition, during the stability studies, it has been confirmed that the typical degradation product of HCTZ is formed, impurity B (4-amino-6-chloro-1,3-benzenedisulfonamide), which implies formation of formaldehyde as hydrolytic impurity not reported in the Ph. Eur. (16). Both impurities are particularly raised in 2-layered tablets with alkaline and neutral placebo layers. Stability of HCTZ was improved in the case of the 3-layer tablet, where the intermediate separation layer of glycerol monostearate was present. It is presumed that the HCTZ dissolution rate was decreased due to formation of non-soluble substances as a result of HCTZ degradation in the presence of alkaline layer.
Published Online: 17 Dec 2015 Page range: 399 - 412
Abstract
Abstract
Reaction of 6-amino-3-methyl-4-(substituted phenyl)-1,4- dihydropyrano[2,3-c]pyrazole-5-carbonitrile (1) with triethylorthoformate followed by treatment with hydrazine hydrate, formic acid, acetic acid, phenylisocyanate, ammonium thiocyanate and formamide afforded the corresponding pyranopyrimidine derivatives 2-6. Cyclocondensation of 1 with cyclohexanone afforded pyrazolopyranoquinoline 7. One-pot process of diazotation and de-diazochlorination of 1 afforded pyrazolopyranotriazine derivative 8, which upon treatment with secondary amines afforded 9 and 10a- c. Condensation of 2 with aromatic aldehyde gave the corresponding Schiff bases 11a,b, the oxidative cyclization of the hydrazone with appropriate oxidant afforded 11-(4- fluorophenyl))- 2-(4-substituted phenyl)-10-methyl-8,11-dihydropyrazolo-[ 4’,3’:5,6]pyrano[3,2-e][1,2,4]triazolo[1,5-c]pyrimidines (12a,b). Structures of the synthesized compounds were confirmed by spectral data and elemental analysis. All synthesized compounds were evaluated for antibacterial and antifungal activities compared to norfloxacin and fluconazole as standard drugs. Compounds 9, 10c, 12a and 15 were found to be the most potent antibacterial agents, with activity equal to that of norfloxacin. On the other hand, compound 5 exhibited higher antifungal activity compared to fluconazole.
Published Online: 17 Dec 2015 Page range: 413 - 426
Abstract
Abstract
Free radicals are involved in the development of reperfusion injuries. Using a spin trap, the intensity of such lesions can be reduced. Nitrones (effective in vivo spin traps) were tried in this work as in vivo nitric oxide donors. Nitrite and nitrate concentration values (rabbit blood) were used as biomarkers of nitric oxide production. Most nitrones did not increase plasma concentrations of nitrite and nitrate; on the contrary, reduced plasma concentrations of these indicators were noted. However, glyoxal isopropyldinitrone, in a dose of 50 mg kg-1, was highly effective in increasing nitric oxide production. At the same time, nitrones do not react with hepatic homogenates, proving that the release of nitric oxide takes place in the tissues and is not related to hepatic metabolism. Before using nitrones in vivo, they were tested in vitro for the ability to release nitric oxide following a reaction with the hydroxyl radical.
Published Online: 17 Dec 2015 Page range: 427 - 441
Abstract
Abstract
With the increased reliance on in vitro dissolution testing as an indicator of in vivo drug behavior and the trend towards the in silico modeling of dosage form performance, the need for bioperformance dissolution methodology development has been enhanced. Determination of the in vivo drug delivery profile is essential for the bioperformance dissolution test development and in vitro/in vivo correlation modeling, as well as the understanding of absorption mechanisms. The aim of this study was to compare different methods in terms of their usefulness and applicability in deciphering in vivo delivery of nifedipine administered in modified release dosage forms. A detailed survey of publications on nifedipine pharmacokinetics was done and used to identify the magnitude of food effect. In vitro dissolution testing was performed under various experimental conditions. Obtained results indicate the potential for using the developed in silico model coupled with discriminative in vitro dissolution data for identification of the in vivo drug product behavior
Published Online: 17 Dec 2015 Page range: 443 - 452
Abstract
Abstract
Glutamate (Glu) is a major excitatory neurotransmitter involved in epilepsy. Glu is synthesized by glutamate dehydrogenase (GDH, E.C. 1.4.1.3) and dysfunction of the enzymatic activity of GDH is associated with brain pathologies. The main goal of this work is to establish the role of GDH in the effects of antiepileptic drugs (AEDs) such as valproate (VALP), diazepam (DIAZ) and diphenylhydantoin (DPH) and its repercussions on oxygen consumption. Oxidative deamination of Glu and reductive amination of aketoglutarate (αK) in mice brain were investigated. Our results show that AEDs decrease GDH activity and oxygen consumption in vitro. In ex vivo experiments, AEDs increased GDH activity but decreased oxygen consumption during Glu oxidative deamination. VALP and DPH reversed the increase in reductive amination of αK caused by the chemoconvulsant pentylenetetrazol. These results suggest that AEDs act by modulating brain GDH activity, which in turn decreased oxygen consumption. GDH represents an important regulation point of neuronal excitability, and modulation of its activity represents a potential target for metabolic treatment of epilepsy and for the development of new AEDs.
Published Online: 17 Dec 2015 Page range: 453 - 462
Abstract
Abstract
Mefenamic acid (MA) is a widely used non-steroidal antiinflammatory (NSAID) drug. The adverse effects typical of NSAIDs are also present in the case of MA, partly due to its low water solubility. The aim of this study was to increase the water solubility of MA in order to influence its absorption and bioavailability. Solid dispersions of MA were prepared by the melting method using polyethylene glycol 6000 and different types (laurate, D-1216; palmitate, P-1670; stearate, S-1670) and amounts of sucrose esters as carriers. The X-ray diffraction results show that MA crystals were not present in the products. Dissolution tests carried out in artificial intestinal juice showed that the product containing 10 % D-1216 increased water solubility about 3 times. The apparent permeability coefficient of MA across human Caco-2 intestinal epithelial cell layers was high and, despite the difference in solubility, there was no further increase in drug penetration in the presence of the applied additives.
Published Online: 17 Dec 2015 Page range: 463 - 471
Abstract
Abstract
Clioquinol has been shown to have anticancer activity in several carcinoma cells. In this study, we preliminarily examined the effect of clioquinol in human SMMC-7721 hepatoma and QSG-7701 normal hepatic cells. Our results indicated that clioquinol did not significantly affect survival of QSG-7701 cells, whereas it reduced cell viability in a concentration- and time-dependent manner in SMMC-7721 cells. Clioquinol did not trigger autophagy and apoptosis, while it induced cell cycle arrest in the S-phase in SMMC- 7721 cells. Additionally, down-regulation of cyclin D1, A2, E1, Cdk2 and up-regulation of p21, p27 were detected after the treatment with clioquinol. The results demonstrated for the first time that clioquinol suppressed cell cycle progression in the S-phase in SMMC-7721 cells via the p21, p27-cyclin E,A/Cdk2 pathway. This suggests that clioquinol may have a therapeutic potential as an anticancer drug for certain malignances.
Published Online: 17 Dec 2015 Page range: 473 - 479
Abstract
Abstract
Echinacea purpurea (L.) Moench, a member of the Asteraceae family, is a plant rich in flavonoids, essential oils, phenolic compounds, saponins, polysaccharides and glycoproteins. The aim of the study was to evaluate the protein content in dried roots of Echinacea purpurea (L.) Moench after homogenization of roots with liquid nitrogen, extraction in 0.01 mol L-1 phosphate-buffered saline (PBS) and purification followed by fractionation of proteins using gel filtration chromatography. Total concentration of proteins was measured using the Bradford method, and evaluation of the molecular mass of proteins was accomplished by applying the SDS-PAGE gel electrophoresis. The Bradford assay revealed that the highest concentration of proteins in fractions collected after gel filtration chomatography was 4.66–6.07 mg mL-1. Glycoproteins, alkamides and polysaccharides in roots of Echinacea purpurea (L.) Moench are chemical compounds that are responsible for their immunomodulatory properties. However, information about the difference of protein contents in fresh and dried roots of E. purpurea is insufficient.
Codeine, a weak opiate, requires increased pharmacovigilance relating to availability, heterogeneous nature of misuse, dependence and associated harm. A scoping review of literature on codeine was conducted using Arksey & O’Malley’s framework (1). Databases searched included PubMed, EBSCO Host, Science Direct, EMBASE, PsycINFO, Cochrane library and Medline from 1994 to 2014. Follow-up search strategies involved hand searching and searching of pharmaceutical, health, medical and drug related websites. Initial zscreening identified 3,105 articles with 475 meeting the inclusion criteria. Eight broad categories organised the literature, data charting and qualitative synthesis. This paper presents implications for practice and makes recommendations to address these issues. Themes identified relate to raising public and practitioner awareness, risk management, dispensing practices and monitoring and surveillance of codeine. Evidence to inform law enforcement, drug surveillance, public health initiatives, harm reduction approaches, pharmacy, clinical and treatment practices is warranted.
This study was aimed at developing risperidone oral disintegrating mini-tablets (OD-mini-tablets) as age-appropriate formulations and to assess their suitability for infants and pediatric use. An experimental Box-Behnken design was applied to assure high quality of the OD-mini-tablets and reduce product variability. The design was employed to understand the influence of the critical excipient combinations on the production of OD-mini-tablets and thus guarantee the feasibility of obtaining products with dosage form uniformity. The variables selected were mannitol percent in Avicel (X1), swelling pressure of the superdisintegrant (X2), and the surface area of Aerosil as a glidant (X3). Risperidone-excipient compatibilities were investigated using FTIR and the spectra did not display any interaction. Fifteen formulations were prepared and evaluated for preand post-compression characteristics. The prepared ODmini- tablet batches were also assessed for disintegration in simulated salivary fluid (SSF, pH 6.2) and in reconstituted skimmed milk. The optimized formula fulfilled the requirements for crushing strength of 5 kN with minimal friability, disintegration times of 8.4 and 53.7 s in SSF and skimmed milk, respectively. This study therefore proposes the risperidone OD-mini-tablet formula having robust mechanical properties, uniform and precise dosing of medication with short disintegration time suitable for pediatric use.
During the past few years, the studies of bi- and multi-layered tablets increased due to the consumption of several different drugs per day by a patient and requests for appropriate patient compliance. The demographic shift toward older population increases the use of combination therapy as polypharmacy. Hydrochlorothiazide (HCTZ), as a model drug, is most commonly used in the treatment of hypertension, congestive heart failure and as a diuretic. The aim of the present study is to investigate the effect of the local environment on dissolution and stability behaviour of HCTZ in fixed multilayered tablet combinations, which are commonly used in polypharmacy. For this purposes, three different systems were introduced: (i) two conventional tablets (HCTZ and pH modifying placebo), (ii) 2-layer tablets (HCTZ, pH modifying placebo) and (iii) 3-layer tablets (HCTZ, barrier and pH modifying placebo). Disintegration of tablets, dissolution of HCTZ from tablets and HCTZ related substances were monitored for all systems. Results showed that there was a significant difference between dissolution profiles of the conventional two-tablet system (HCTZ tablet and pH modifying tablet) and the 2-layer and 3-layer tablets, which include the pH modifying layer. In the case of the conventional two-tablets system, 85 % of HCTZ was dissolved in less than 15 minutes. The dissolution profiles of HCTZ from 2-layered and 3-layered tablets showed a decrease in the dissolution rate. In addition, during the stability studies, it has been confirmed that the typical degradation product of HCTZ is formed, impurity B (4-amino-6-chloro-1,3-benzenedisulfonamide), which implies formation of formaldehyde as hydrolytic impurity not reported in the Ph. Eur. (16). Both impurities are particularly raised in 2-layered tablets with alkaline and neutral placebo layers. Stability of HCTZ was improved in the case of the 3-layer tablet, where the intermediate separation layer of glycerol monostearate was present. It is presumed that the HCTZ dissolution rate was decreased due to formation of non-soluble substances as a result of HCTZ degradation in the presence of alkaline layer.
Reaction of 6-amino-3-methyl-4-(substituted phenyl)-1,4- dihydropyrano[2,3-c]pyrazole-5-carbonitrile (1) with triethylorthoformate followed by treatment with hydrazine hydrate, formic acid, acetic acid, phenylisocyanate, ammonium thiocyanate and formamide afforded the corresponding pyranopyrimidine derivatives 2-6. Cyclocondensation of 1 with cyclohexanone afforded pyrazolopyranoquinoline 7. One-pot process of diazotation and de-diazochlorination of 1 afforded pyrazolopyranotriazine derivative 8, which upon treatment with secondary amines afforded 9 and 10a- c. Condensation of 2 with aromatic aldehyde gave the corresponding Schiff bases 11a,b, the oxidative cyclization of the hydrazone with appropriate oxidant afforded 11-(4- fluorophenyl))- 2-(4-substituted phenyl)-10-methyl-8,11-dihydropyrazolo-[ 4’,3’:5,6]pyrano[3,2-e][1,2,4]triazolo[1,5-c]pyrimidines (12a,b). Structures of the synthesized compounds were confirmed by spectral data and elemental analysis. All synthesized compounds were evaluated for antibacterial and antifungal activities compared to norfloxacin and fluconazole as standard drugs. Compounds 9, 10c, 12a and 15 were found to be the most potent antibacterial agents, with activity equal to that of norfloxacin. On the other hand, compound 5 exhibited higher antifungal activity compared to fluconazole.
Free radicals are involved in the development of reperfusion injuries. Using a spin trap, the intensity of such lesions can be reduced. Nitrones (effective in vivo spin traps) were tried in this work as in vivo nitric oxide donors. Nitrite and nitrate concentration values (rabbit blood) were used as biomarkers of nitric oxide production. Most nitrones did not increase plasma concentrations of nitrite and nitrate; on the contrary, reduced plasma concentrations of these indicators were noted. However, glyoxal isopropyldinitrone, in a dose of 50 mg kg-1, was highly effective in increasing nitric oxide production. At the same time, nitrones do not react with hepatic homogenates, proving that the release of nitric oxide takes place in the tissues and is not related to hepatic metabolism. Before using nitrones in vivo, they were tested in vitro for the ability to release nitric oxide following a reaction with the hydroxyl radical.
With the increased reliance on in vitro dissolution testing as an indicator of in vivo drug behavior and the trend towards the in silico modeling of dosage form performance, the need for bioperformance dissolution methodology development has been enhanced. Determination of the in vivo drug delivery profile is essential for the bioperformance dissolution test development and in vitro/in vivo correlation modeling, as well as the understanding of absorption mechanisms. The aim of this study was to compare different methods in terms of their usefulness and applicability in deciphering in vivo delivery of nifedipine administered in modified release dosage forms. A detailed survey of publications on nifedipine pharmacokinetics was done and used to identify the magnitude of food effect. In vitro dissolution testing was performed under various experimental conditions. Obtained results indicate the potential for using the developed in silico model coupled with discriminative in vitro dissolution data for identification of the in vivo drug product behavior
Glutamate (Glu) is a major excitatory neurotransmitter involved in epilepsy. Glu is synthesized by glutamate dehydrogenase (GDH, E.C. 1.4.1.3) and dysfunction of the enzymatic activity of GDH is associated with brain pathologies. The main goal of this work is to establish the role of GDH in the effects of antiepileptic drugs (AEDs) such as valproate (VALP), diazepam (DIAZ) and diphenylhydantoin (DPH) and its repercussions on oxygen consumption. Oxidative deamination of Glu and reductive amination of aketoglutarate (αK) in mice brain were investigated. Our results show that AEDs decrease GDH activity and oxygen consumption in vitro. In ex vivo experiments, AEDs increased GDH activity but decreased oxygen consumption during Glu oxidative deamination. VALP and DPH reversed the increase in reductive amination of αK caused by the chemoconvulsant pentylenetetrazol. These results suggest that AEDs act by modulating brain GDH activity, which in turn decreased oxygen consumption. GDH represents an important regulation point of neuronal excitability, and modulation of its activity represents a potential target for metabolic treatment of epilepsy and for the development of new AEDs.
Mefenamic acid (MA) is a widely used non-steroidal antiinflammatory (NSAID) drug. The adverse effects typical of NSAIDs are also present in the case of MA, partly due to its low water solubility. The aim of this study was to increase the water solubility of MA in order to influence its absorption and bioavailability. Solid dispersions of MA were prepared by the melting method using polyethylene glycol 6000 and different types (laurate, D-1216; palmitate, P-1670; stearate, S-1670) and amounts of sucrose esters as carriers. The X-ray diffraction results show that MA crystals were not present in the products. Dissolution tests carried out in artificial intestinal juice showed that the product containing 10 % D-1216 increased water solubility about 3 times. The apparent permeability coefficient of MA across human Caco-2 intestinal epithelial cell layers was high and, despite the difference in solubility, there was no further increase in drug penetration in the presence of the applied additives.
Clioquinol has been shown to have anticancer activity in several carcinoma cells. In this study, we preliminarily examined the effect of clioquinol in human SMMC-7721 hepatoma and QSG-7701 normal hepatic cells. Our results indicated that clioquinol did not significantly affect survival of QSG-7701 cells, whereas it reduced cell viability in a concentration- and time-dependent manner in SMMC-7721 cells. Clioquinol did not trigger autophagy and apoptosis, while it induced cell cycle arrest in the S-phase in SMMC- 7721 cells. Additionally, down-regulation of cyclin D1, A2, E1, Cdk2 and up-regulation of p21, p27 were detected after the treatment with clioquinol. The results demonstrated for the first time that clioquinol suppressed cell cycle progression in the S-phase in SMMC-7721 cells via the p21, p27-cyclin E,A/Cdk2 pathway. This suggests that clioquinol may have a therapeutic potential as an anticancer drug for certain malignances.
Echinacea purpurea (L.) Moench, a member of the Asteraceae family, is a plant rich in flavonoids, essential oils, phenolic compounds, saponins, polysaccharides and glycoproteins. The aim of the study was to evaluate the protein content in dried roots of Echinacea purpurea (L.) Moench after homogenization of roots with liquid nitrogen, extraction in 0.01 mol L-1 phosphate-buffered saline (PBS) and purification followed by fractionation of proteins using gel filtration chromatography. Total concentration of proteins was measured using the Bradford method, and evaluation of the molecular mass of proteins was accomplished by applying the SDS-PAGE gel electrophoresis. The Bradford assay revealed that the highest concentration of proteins in fractions collected after gel filtration chomatography was 4.66–6.07 mg mL-1. Glycoproteins, alkamides and polysaccharides in roots of Echinacea purpurea (L.) Moench are chemical compounds that are responsible for their immunomodulatory properties. However, information about the difference of protein contents in fresh and dried roots of E. purpurea is insufficient.