Accès libre

AC low frequency conductivity in PZT PFS ferroelectric ceramics

   | 23 mai 2020
À propos de cet article

Citez

[1] Shirane G., Suzuki K., Takeda A., Phase transition in Solid Solutions PbZrO3 and PbTiO3 (II) X ray study, Journal of the Physical Society of Japan, Vol. 7, 1952, 12–18.10.1143/JPSJ.7.12Search in Google Scholar

[2] Jaffe B., Cook W.R., Piezoelectric Ceramic, Academic Press, London 1971, 136.Search in Google Scholar

[3] Noheda B., Cox D.E., Gonzalo J.A., Cross L.E., Park S.E., A monoclinic ferroelectric phase in the Pb (Zr1-xTix) O3 solid solution, Applied Physics Letters, Vol. 74, 1999.10.1063/1.123756Search in Google Scholar

[4] Glazer A.M., Thomas P.A., Baba-Kishi K.Z., Pang G.K.H., Tai C.W., Influence of short-range and long range order on the evolution of the morphotropic phase boundary of Pb(Zr1-xTix)O3, Physical Reviev B, Vol. 70, 184123–1–9.10.1103/PhysRevB.70.184123Search in Google Scholar

[5] Osak A., Pawelczyk M., Ptak W.S., Investigation of the structure, pyro- and piezoelectric properties of a ferroelectric ceramics of PZT+(FeSb), Ferroelectics, Vol. 186, 1996, 123–126.10.1080/00150199608218048Search in Google Scholar

[6] Elliot S. R., Ac conduction in amorphous chalcogenite and pnictidesemicondactors, Advances in Physics, Vol. 36, 1987,131–218.10.1080/00018738700101971Search in Google Scholar

[7] Jonsher A.K., Dielectric relaxation in solids Ch. 4, Chelsae Dielectric Press, London 1984.Search in Google Scholar

[8] Pollak M. On the Frequency Dependence of Conductivity in Amorphous Solids, Philosophical Magazine, Vol. 23, 1971, 519–2.10.1080/14786437108216402Search in Google Scholar

[9] Miller A., Abrahams E., Impurity Conduction at Low Concentration, Physical Review, Vol. 120, 1960, 745–755.10.1103/PhysRev.120.745Search in Google Scholar

[10] Ambegaokar V., Halperin B.J., Langer J.S., Hopping Conductivity in Disordered Systems, Physical Review B, Vol. 7, 1971, 2612–2620.10.1103/PhysRevB.4.2612Search in Google Scholar

[11] Butcher P.N., On the rate equation formulation of the hopping conductivity problem, Journal of Physics C: Solid State Physics, Vol. 5, 1972, 1817–1829.10.1088/0022-3719/5/14/009Search in Google Scholar

[12] Scher H., Lax M., Stochastic transport in disordered solids, Physical Review B, Vol. 7, 1973, 4491–4519.10.1103/PhysRevB.7.4502Search in Google Scholar

[13] Dyre J.C., The radom free-energy barier model for AC conduction in disordered solids, Journal of Applied Physics, Vol. 64, 1988, 2456–2468.10.1063/1.341681Search in Google Scholar

[14] Pike G.E., Ac conductivity of scandium oxide and new hopping model of conductivity, Physical Review B, Vol. 6, 1972, 1572–1580.10.1103/PhysRevB.6.1572Search in Google Scholar

[15] Böttger H.B., Bryksin V.V., Yashin G. Yu., Cluster approximatelly in the theorry of hopping model of conductivity in disordered solids, Journal Physics C: Solids State Physics, Vol. 12, 1979, 2797–2808.10.1088/0022-3719/12/14/016Search in Google Scholar

[16] Summerfield S., Butcher P.N., A unified equivalent-circuit approach to the theory of AC and DC hopping conductivity in disordered systems, Journal of Physics C: Solid State Physics, Vol. 15, 1982, 7003–7016.10.1088/0022-3719/15/34/013Search in Google Scholar

[17] Hunt A., The AC conductivity of variable range hopping systems such as amorphous semiconductors, Philosophical Magazine B, Vol. 64, 1991, 579–589.10.1080/13642819108217882Search in Google Scholar

[18] Hunt A., The AC conductivity of the Fermi glass. A model for glassy conduction, Solid State Communication, Vol. 80, 1991, 151–155.10.1016/0038-1098(91)90172-RSearch in Google Scholar

[19] Hunt A., Frequency dependent conductivity of the Fermi glass, Journal of Physics Condensed Matter, Vol. 4, 1992, 6957–6970.10.1088/0953-8984/4/33/009Search in Google Scholar

[20] Moore E.J., Numerical studies of the AC conductivity of hopping system I. Effects of space and energy disorder, Journal of Physics C: Solid State Physics, Vol. 7, 1974, 1840–1853.10.1088/0022-3719/7/10/011Search in Google Scholar

[21] Niklassan G.A., Fractal aspects of the dielectric response of charge carriers in disordered materials, Journals of Applied Physics, Vol. 62, 1987, R1–14.10.1063/1.339355Search in Google Scholar

[22] Pollak M., Pohl H.A., Dielectric dispersion in some polymer and polyelectrolyte. A model, Journal Chemical Physics, Vol. 67, No. 7, 1975, 2980–2987.10.1063/1.431723Search in Google Scholar

[23] Skal A.S., Shklovski B.J., Soviet Physics of Semiconductors, Vol. 8, 1975, 1029.Search in Google Scholar

[24] Stauffler D., Introduction to Percolation Theory, Taylor and Francis, London 1985.10.4324/9780203211595Search in Google Scholar

[25] Osak A., Jankowska-Summara I., Electrical transport in ferroelectric Pb[(Fe1/3Sb2/3)xTiyZrz]O3 ceramics, Phase Transitions, Vol. 82, 2009, 899–909.10.1080/01411590903470822Search in Google Scholar

[26] Osak A., Ultra low frequency dielectric dispersion in PZT-PFS ferroelectric ceramics, Journal of Advanced Dielectrics, Vol. 3, 2013.10.1142/S2010135X14500210Search in Google Scholar

[27] Erdem E., Eichel R.A., Kungl H., Hoffman M.J., Ozarowski A., van Tal J., Brunel L.C., Characterization of (FeZrTi-VO’’) defects dipoles in (La, Fe) codoped PZT 52.2/47.5 Piezoelectric ceramics by Multifrequency Electron Paramagnetic Resonance Spectroscopy, IEEE Trans. Ultrasonic, Ferroelectrics, Frequency Contr. Vol. 55, 2008, 1061–1068.10.1109/TUFFC.2008.75718519213Search in Google Scholar

[28] Chen Ang., Zhi Yu and Cross L.E., Oxygen-vacancy low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3, Physical Review B, Vol. 62, 2000, 228–236.10.1103/PhysRevB.62.228Search in Google Scholar

[29] Marton P., Elsässer C., Switching of a substitutional-iron/oxygen-vacancy defect complex in ferroelectric PbTiO3 from first principles, Physical Review B, Vol. 83, 2011, 020106–1–4.10.1103/PhysRevB.83.020106Search in Google Scholar