[
Castro G.M., Klöckl C., Regner P., Schmidt J., Pereira A.O.Jr. (2022). Improvements to Modern Portfolio Theory based models applied to electricity systems. Energy Economics, Vol. 111, 1-16.
]Search in Google Scholar
[
Ceran B., Szczerbowski, R. (2017). Analiza techniczno-ekonomiczna instalacji fotowoltaicznej. Zeszyty Naukowe, Instytut Gospodarki Surowcami Mineralnymi i Energią PAN 98, 15–26.
]Search in Google Scholar
[
Chaves-Schwinteck, P. (2013). The Modern Portfolio Theory Applied to Wind Farm Investments, Oldenburg: Universität Oldenburg. PhD Thesis, Carl von Ossietzky.
]Search in Google Scholar
[
Cornes R.C., Schrier G., Besselaar E.M., Jones P.D. (2018). An Ensemble Version of the E-OBS Temperature and Precipitation Datasets. JGR Atmospferes.
]Search in Google Scholar
[
Dale M. (2013). A comparative analysis of energy costs of photovoltaic, solar thermal and wind electricity generation technologies, Global Climate & Energy Project. Article in Applied Sciences. Stanford: Stanford University, 1–13.
]Search in Google Scholar
[
DeLlano-Paz F., Cartelle-Barros J.J., Martínez-Fernández P. (2023). Application of modern portfolio theory to the European electricity mix: an assessment of environmentally optimal scenarios. Environment, Development and Sustainability, 26, 15001–15029.
]Search in Google Scholar
[
ECA&D project (online). Retrieved from: https://www.ecad.eu (access: 13.11.2023).
]Search in Google Scholar
[
Fernandez P.M. (2019). An application of the Modern Portfolio Theory to the optimization of the European Union power generation mix from an environmental perspective. PhD Thesis, Universidade da Coruna.
]Search in Google Scholar
[
Garcia C.R., González V., Contreras J., Custodio J.E.S.C. (2017). Applying modern portfolio theory for a dynamic energy portfolio allocation in electricity markets. Electric Power Systems Research 150, 11–23.
]Search in Google Scholar
[
Ec. Europa (online). Retrieved from: https://ec.europa.eu/eurostat/web/main/data/database (access: 2.12.2023).
]Search in Google Scholar
[
Kowalczyk A.M.; Czyża S. (2022). Optimising Photovoltaic Farm Location Using a Capabilities Matrix and GIS. Energies 15, 6693. https://doi.org/10.3390/en15186693
]Search in Google Scholar
[
Lopez M., Rodriguez N., Iglesias G. (2020). Combined Floating Offshore Wind and Solar PV. Journal of Marine Science and Engineering 8, 576.
]Search in Google Scholar
[
Markowitz H. (1952). Portfolio Selection. The Journal of Finance 7(1), 77–91.
]Search in Google Scholar
[
Nzelibe I.U., Ojediran D.D., Moses M. (2022). Geospatial Assessment and Mapping of Suitable Sites for a Utility-scale Solar PV Farm in Akure South, Ondo State, Nigeria. Geomatics and Environmental Engineering 16(4), 79-101.
]Search in Google Scholar
[
Patel M.R. (1999). Wind and Solar Power Systems, CRC Press LLC. New York: Merchant Marine Academy Kings Point.
]Search in Google Scholar
[
Project UERRA (online). Retrieved from: https://www.uerra.eu (access: 13.11.2023).
]Search in Google Scholar
[
Sharpe W.F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. The Journal of Finance 19(3), 425–442.
]Search in Google Scholar
[
Silva A.R., Estanqueiro A. (2022). FromWind to Hybrid: A Contribution to the Optimal Design of Utility-Scale Hybrid Power Plants. Energies 15, 2560.
]Search in Google Scholar
[
Wyrobek J. (2018). Comparative Analysis of Wind Farms Financial Situation in Selected Countries of the European Union in years 2009–2017. Problems of World Agriculture 18(4), 504–514.
]Search in Google Scholar