Accès libre

Optimization of the conditions of cooperation of hybrid solutions of wind farms and solar farms for the area of Poland

  
12 oct. 2024
À propos de cet article

Citez
Télécharger la couverture

Castro G.M., Klöckl C., Regner P., Schmidt J., Pereira A.O.Jr. (2022). Improvements to Modern Portfolio Theory based models applied to electricity systems. Energy Economics, Vol. 111, 1-16. Search in Google Scholar

Ceran B., Szczerbowski, R. (2017). Analiza techniczno-ekonomiczna instalacji fotowoltaicznej. Zeszyty Naukowe, Instytut Gospodarki Surowcami Mineralnymi i Energią PAN 98, 15–26. Search in Google Scholar

Chaves-Schwinteck, P. (2013). The Modern Portfolio Theory Applied to Wind Farm Investments, Oldenburg: Universität Oldenburg. PhD Thesis, Carl von Ossietzky. Search in Google Scholar

Cornes R.C., Schrier G., Besselaar E.M., Jones P.D. (2018). An Ensemble Version of the E-OBS Temperature and Precipitation Datasets. JGR Atmospferes. Search in Google Scholar

Dale M. (2013). A comparative analysis of energy costs of photovoltaic, solar thermal and wind electricity generation technologies, Global Climate & Energy Project. Article in Applied Sciences. Stanford: Stanford University, 1–13. Search in Google Scholar

DeLlano-Paz F., Cartelle-Barros J.J., Martínez-Fernández P. (2023). Application of modern portfolio theory to the European electricity mix: an assessment of environmentally optimal scenarios. Environment, Development and Sustainability, 26, 15001–15029. Search in Google Scholar

ECA&D project (online). Retrieved from: https://www.ecad.eu (access: 13.11.2023). Search in Google Scholar

Fernandez P.M. (2019). An application of the Modern Portfolio Theory to the optimization of the European Union power generation mix from an environmental perspective. PhD Thesis, Universidade da Coruna. Search in Google Scholar

Garcia C.R., González V., Contreras J., Custodio J.E.S.C. (2017). Applying modern portfolio theory for a dynamic energy portfolio allocation in electricity markets. Electric Power Systems Research 150, 11–23. Search in Google Scholar

Ec. Europa (online). Retrieved from: https://ec.europa.eu/eurostat/web/main/data/database (access: 2.12.2023). Search in Google Scholar

Kowalczyk A.M.; Czyża S. (2022). Optimising Photovoltaic Farm Location Using a Capabilities Matrix and GIS. Energies 15, 6693. https://doi.org/10.3390/en15186693 Search in Google Scholar

Lopez M., Rodriguez N., Iglesias G. (2020). Combined Floating Offshore Wind and Solar PV. Journal of Marine Science and Engineering 8, 576. Search in Google Scholar

Markowitz H. (1952). Portfolio Selection. The Journal of Finance 7(1), 77–91. Search in Google Scholar

Nzelibe I.U., Ojediran D.D., Moses M. (2022). Geospatial Assessment and Mapping of Suitable Sites for a Utility-scale Solar PV Farm in Akure South, Ondo State, Nigeria. Geomatics and Environmental Engineering 16(4), 79-101. Search in Google Scholar

Patel M.R. (1999). Wind and Solar Power Systems, CRC Press LLC. New York: Merchant Marine Academy Kings Point. Search in Google Scholar

Project UERRA (online). Retrieved from: https://www.uerra.eu (access: 13.11.2023). Search in Google Scholar

Sharpe W.F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. The Journal of Finance 19(3), 425–442. Search in Google Scholar

Silva A.R., Estanqueiro A. (2022). FromWind to Hybrid: A Contribution to the Optimal Design of Utility-Scale Hybrid Power Plants. Energies 15, 2560. Search in Google Scholar

Wyrobek J. (2018). Comparative Analysis of Wind Farms Financial Situation in Selected Countries of the European Union in years 2009–2017. Problems of World Agriculture 18(4), 504–514. Search in Google Scholar