Accès libre

Modelling of porous metal-organic framework (MOF) materials used in catalysis

À propos de cet article

Citez

Abrahams, B.F., Hoskins, B.F., Michail, D.M., Robson, R. (1994). Assembly of porphyrin building blocks into network structures with large channels. Nature, 369, 727–729. https://doi.org/10.1038/369727a010.1038/369727a0Search in Google Scholar

Alaerts, L., Seguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P.A., De Vos, D.E. (2006). Probing the Lewis Acidity and Catalytic Activity of the Metal– Organic Framework [Cu3 (btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry. A European Jurnal, 12, 7353–7363. https://doi.org/10.1002/chem.20060022010.1002/chem.200600220Search in Google Scholar

Al-Kutubi, H., Gascon, J., Sudholter, E.J.R., Rassaei, L. (2014). Electrosynthesis of Metal–Organic Frameworks: Challenges and Opportunities. Chemelektrochem, 2, 462–474. https://doi.org/10.1002/celc.20140242910.1002/celc.201402429Search in Google Scholar

Banerjee, D., Finkelstein, J., Smirnov, A., Forster, P.M., Borkowski, L.A., Teat, S.J., Parise, J.B. (2011). Synthesis and Structural Characterization of Magnesium Based Coordination Networks in Different Solvents. Crystal Growth & Design, 11(6), 2572–2579. http://doi.org/10.1021/cg200327y10.1021/cg200327ySearch in Google Scholar

Barthelet, K., Marrot, J., Riou, D., Ferey, G. (2002). A Breathing Hybrid Organic Inorganic Solid with Very Large Pores and High Magnetic Characteristics. Angewandte Chemie International Edition, 41(2), 281–284. https://doi.org/10.1002/1521-3773(20020118)41:2<281::AID-ANIE281>3.0.CO;2-Y10.1002/1521-3773(20020118)41:2<281::AID-ANIE281>3.0.CO;2-YSearch in Google Scholar

Barthelet, K., Riou, D., Férey, G. (2002). [VIII(H2O)]3O(O2CC6H4CO2)3•(Cl,9H2O) (MIL-59): a rare example of vanadocarboxylate with a magnetically frustrated three-dimensional hybrid framework. Chemical Communications, (14), 1492–1493. https://doi.org/10.1039/B202749F10.1039/b202749fSearch in Google Scholar

Becke, A.D., (2014). Perspective: Fifty years of density-functional theory in chemical physics. The Journal of Chemical Physics, 140(18), 18A301. https://doi.org/10.1063/1.486959810.1063/1.4869598Search in Google Scholar

Beldon, P.J., Fabian, L., Stein, R.S, Thirumurugan, A., Cheetham, A.K., Fricic, T. (2010). Rapid Room-Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry. Angewandte Chemie International Edition, 49, 9640–9643. https://doi.org/10.1002/anie.20100554710.1002/anie.201005547Search in Google Scholar

Bernales, V., Ortuño, M.A., Truhlar, D.G., C. J. Cramer, C.J., Gagliardi, L. (2018). Computational Design of Functionalized Metal-Organic Framework Nodes for Catalysis. ACS Central Science, 4(1), 5–19. https://doi.org/10.1021/acscentsci.7b0050010.1021/acscentsci.7b00500Search in Google Scholar

Bosch, M., Zhang, M., Zhou, H-C. (2014). Increasing the Stability of Metal-Organic Frameworks. Advances in Chemistry, 2014, 1–8. https://doi.org/10.1155/2014/18232710.1155/2014/182327Search in Google Scholar

Bromberg, L., Diao, Y., Wu, H., Speakman, S.A., Hatton, T.A. (2012). Chromium(III) Terephthalate Metal Organic Framework (MIL-101): HF-Free Synthesis, Structure, Polyoxometalate Composites, and Catalytic Properties. Chemistry of Materials, 24(9), 1664–1675. https://doi.org/10.1021/cm203438210.1021/cm2034382Search in Google Scholar

Burnett, B.J., Barron, P.M., Hu, C., Choe, W. (2011). Stepwise Synthesis of Metal-Organic Frameworks: Replacement of Structural Organic Linkers. Journal of the American Chemical Society, 133(26), 9984–9987. https://doi.org/10.1021/ja201911v10.1021/ja201911v21671680Search in Google Scholar

Bux, H., Liang, F., Li, Y., Cravillon, J., Wiebcke, M., Caro, J. (2009). Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis. Journal of the American Chemical Society, 131(44), 16000–16001. https://doi.org/10.1021/ja907359t10.1021/ja907359t19842668Search in Google Scholar

Cai, Y., Kulkarni, A.R., Huang, Y-G., Sholl, D.S., Walton, K.S., (2014). Control of Metal-Organic Framework Crystal Topology by Ligand Functionalization: Functionalized HKUST-1 Derivatives. Crystal Growth & Design, 14, 6122–6128. https://doi.org/10.1021/cg501285q10.1021/cg501285qSearch in Google Scholar

CCDC. Access Structure. Retrieved form https://www.ccdc.cam.ac.uk/structures/ (date of access: 2020/03/19).Search in Google Scholar

Chen, B., Ockwig, N.W., Millward, A.R., Contreras, D.S., Yaghi, O.M. (2005). High H2 Adsorption in a Microporous Metal-Organic Framework with Open Metal Sites. Angewandte Chemie International Edition, 44, 4745–4749. https://doi.org/10.1002/anie.20046278710.1002/anie.20046278715924282Search in Google Scholar

Chizallet, C., Lazare, S., Bazer-Bachi, D., Bonnier, F., Lecocq, V., Soyer, E., Quoineaud, A.A., Bats, N. (2010). Catalysis of Transesterification by a Nonfunctionalized Metal-Organic Framework: Acido-Basicity at the External Surface of ZIF-8 Probed by FTIR and ab Initio Calculations. Journal of the American Chemical Society, 132(35), 12365–12377. https://doi.org/10.1021/ja103365s10.1021/ja103365s20715825Search in Google Scholar

Chui, S. S-Y., Lo, S. M-F., Charmant, J.P.H., Orpen, A.G., Williams, I.D. (1999). A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science, 283, 1148–1150. https://doi.org/10.1126/science.283.5405.114810.1126/science.283.5405.114810024237Search in Google Scholar

Cohen, A.J., Mori-Sanchez, P., Yang, W. (2012). Challenges for Density Functional Theory. Chemical Reviews, 112(1), 289–320. https://doi.org/10.1021/cr200107z10.1021/cr200107z22191548Search in Google Scholar

Coudert, F.X., Fuchs, A.H. (2016). Computational characterization and prediction of metal-organic framework properties. Coordination Chemistry Reviews, 307, 211–236. https://doi.org/10.1016/j.ccr.2015.08.00110.1016/j.ccr.2015.08.001Search in Google Scholar

Cramer, C.J., Truhlar, D.G. (2009). Density functional theory for transition metals and transition metal chemistry. Physical Chemistry Chemical Physics, 11, 10757–10816. https://doi.org/10.1039/B907148B10.1039/b907148b19924312Search in Google Scholar

Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., Ferey, G. (2009). A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. Journal of the American Chemical Society, 131(31), 10857–10859. https://doi.org/10.1021/ja903726m10.1021/ja903726m19621926Search in Google Scholar

DeCoste, J.B., Demasky, T.J., Katz, M.J., Farha, O.K., Hupp, J.T. (2015). A UiO-66 analogue with uncoordinated carboxylic acids for the broad-spectrum removal of toxic chemicals. New Journal of Chemistr, 39, 2396–2399. https://doi.org/10.1039/C4NJ02093F10.1039/C4NJ02093FSearch in Google Scholar

Dey, C., Kundu, T., Biswal, B.P., Mallick, A., Banerjee, R. (2014). Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallographica Section B, 70, 3–10. https://doi.org/10.1107/S205252061302955710.1107/S205252061302955724441122Search in Google Scholar

Dhakshinamoorthy, A., Alvaro, M., Chevreau, H., Horcajada, P., Devic, T., Serre, C., Garcia, H. (2012). Iron(III) metal-organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide. Catalysis Science Technology, 2, 324–330. https://doi.org/10.1039/C2CY00376G10.1039/C2CY00376GSearch in Google Scholar

Dhakshinamoorthy, A., Alvaro, M., Garcia, H. (2010). Claisen-Schmidt Condensation Catalyzed by Metal-Organic Frameworks. Advanced Synthesis & Catalysis, 352, 711–717. https://doi.org/10.1002/adsc.20090074710.1002/adsc.200900747Search in Google Scholar

Dhakshinamoorthy, A., Alvaro, M., Garcia, H. (2010). Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening o Epoxides. Chemistry A European Journal, 16, 8530–8536. https://doi.org/10.1002/chem.20100058810.1002/chem.20100058820549723Search in Google Scholar

Dinca, M., Yu, A.F., Long, J.R., (2006). Microporous Metal-Organic Frameworks Incorporating 1,4-Benzeneditetrazolate: Syntheses, Structures, and Hydrogen Storage Properties [J. Am. Chem. Soc. 2006, 128, 8904−8913]. Journal of the American Chemical Society, 128(51), 17153–17153. https://doi.org/10.1021/ja068019a10.1021/ja068019aSearch in Google Scholar

Dong, X., Liu, X., Chen, Y., Zhang, M. (2018). Screening of bimetallic M-Cu-BTC MOFs for CO2 activation and mechanistic study of CO2 hydrogenation to formic acid: A DFT study. Journal of CO2 Utilization, 24, 64–72. https://doi.org/10.1016/j.jcou.2017.11.01410.1016/j.jcou.2017.11.014Search in Google Scholar

Du, M., Li, C.P., Zhao, X.J. (2006). Metal-Controlled Assembly of Coordination Polymers with the Flexible Building Block 4-Pyridylacetic Acid (Hpya). Crystal Growth & Design, 6(1), 335–341. https://doi.org/10.1021/cg050254210.1021/cg0502542Search in Google Scholar

Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., Yaghi, M.O. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295, 469–472. https://doi.org/10.1126/science.106720810.1126/science.106720811799235Search in Google Scholar

Eddaoudi, M., Moler, D.B., Li, H., Chen, B., Reineke, T.M., O’Keeffe, M., Yaghi, O.M., (2001). Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks. Accounts of Chemical Research, 34(4), 319–330. https://doi.org/10.1021/ar000034b10.1021/ar000034b11308306Search in Google Scholar

Evans, J.D., Fraux, G., Gaillac, R., Kohen, D., Trousselet, F., Vanson, J.M., Coudert, F.X. (2017). Computational Chemistry Methods for Nanoporous Materials. Chemistry of Materials, 29(1), 199–212. https://doi.org/10.1021/acs.chemmater.6b0299410.1021/acs.chemmater.6b02994Search in Google Scholar

Fang, H., Demir, H., Kamakoti, P., Sholl, D.S., (2014). Recent developments in first-principles force fields for molecules in nanoporous materials. Journal of Materials Chemistry A, 2, 274–291. https://doi.org/10.1039/C3TA13073H10.1039/C3TA13073HSearch in Google Scholar

Farha, O.K., Hupp, J.T. (2010). Rational Design, Synthesis, Purification, and Activation of Metal-Organic Framework Materials. Accounts Of Chemical Research, 43(8), 1166–1175. https://doi.org/10.1021/ar100061710.1021/ar100061720608672Search in Google Scholar

Farha, O.K., Yazaydın, A.O., Eryazici, I., Malliakas, C.D., Hauser, B.G., Kanatzidis, M.G., Nguyen, S.T., Snurr, R.Q., Hupp, J.T. (2010). De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry, 2, 944–948. https://doi.org/10.1038/nchem.83410.1038/nchem.83420966950Search in Google Scholar

Farrusseng, D., Aguado, S., Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48, 7502–7513. https://doi.org/10.1002/anie.20080606310.1002/anie.20080606319691074Search in Google Scholar

Farrusseng, D., Daniel, C., Gaudillere, C., Ravon, U., Schuurman, Y., Mirodatos, C., Dubbeldam, D., Frost, H., Snurr, R.Q. (2009). Heats of Adsorption for Seven Gases in Three Metal-Organic Frameworks: Systematic Comparison of Experiment and Simulation. Langmuir, 25(13), 7383–7388. https://doi.org/10.1021/la900283t10.1021/la900283t19496548Search in Google Scholar

Ferey, G. (2008). Hybrid porous solids: past, present, future. Chemical Society Reviews, 37, 191–214. https://doi.org/10.1039/B618320B10.1039/B618320B18197340Search in Google Scholar

Ferey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surble, S., Margiolaki, I., (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309, 2040–2042. https://doi.org/10.1126/science.111627510.1126/science.111627516179475Search in Google Scholar

Ferey, G., Serre, C., Mellot-Draznieks, C., Millange, F., Surble, S., Dutour, J., Margiolaki, I. (2004). A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction. Angewandte Chemie International Edition, 43, 6296–6301. https://doi.org/10.1002/anie.20046059210.1002/anie.20046059215372634Search in Google Scholar

First, E.L., Floudas, C.A. (2013). MOFomics: Computational pore characterization of metal-organic frameworks. Microporous and Mesoporous Materials, 2013(165), 32–39. https://doi.org/10.1016/j.micromeso.2012.07.04910.1016/j.micromeso.2012.07.049Search in Google Scholar

Friscic, T., Reid, D.G., Halasz, I., Stein, R.S., Dinnebier, R.E., Duer, M.J. (2010). Ion- and Liquid-Assisted Grinding: Improved Mechanochemical Synthesis of Metal-Organic Frameworks Reveals Salt Inclusion and Anion Templating. Angewandte Chemie International Edition, 49, 712–715. https://doi.org/10.1002/anie.20090658310.1002/anie.20090658320017178Search in Google Scholar

Frost, H., Snurr, R.Q. (2007). Design Requirements for Metal-Organic Frameworks as Hydrogen Storage Materials. The Journal of Physical Chemistry C, 111(50), 18794–18803. https://doi.org/10.1021/jp076657p10.1021/jp076657pSearch in Google Scholar

Fujita, M., Kwon, Y.J., Washizu, S., Ogura, K. (1994). Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4’-Bipyridine. Journal of the American Chemical Society, 116(3), 1151–115. https://doi.org/10.1021/ja00082a05510.1021/ja00082a055Search in Google Scholar

Garay, A.L., Pichona, A., James, S.L. (2007). Solvent-free synthesis of metal complexes. Chemical Society Reviews, 36, 846–855. https://doi.org/10.1039/b600363j10.1039/b600363j17534472Search in Google Scholar

Gascon, J., Corma, A., Kapteijn, F., Llabrés i Xanema, F.X. (2014). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361–378. https://doi.org/10.1021/cs400959k10.1021/cs400959kSearch in Google Scholar

Getman, R.B., Bae, Y.S., Wilmer, C.E., Snurr, R.Q. (2012). Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal-Organic Frameworks. Chemical Reviews, 112(2), 703–723. https://doi.org/10.1021/cr200217c10.1021/cr200217c22188435Search in Google Scholar

Goesten, M.G., Magusin, P.C.M.M., Pidko, E.A., Mezari, B., Hensen, E.J.M., Kapteijn, F., Gascon, J. (2014). Molecular Promoting of Aluminum Metal-Organic Framework Topology MIL-101 by N,N-Dimethylformamide. Inorganic Chemistry, 53(2), 882–887. https://doi.org/10.1021/ic402198a10.1021/ic402198a405117424405155Search in Google Scholar

Ha, N.T.T., Lefedova, O.V., Ha, N.N. (2016). Theoretical Study on the Adsorption of Carbon Dioxide on Individual and Alkali-Metal Doped MOF-5s. Russian Journal of Physical Chemistry A, 90, 220–225. https://doi.org/10.1134/S003602441512020110.1134/S0036024415120201Search in Google Scholar

Hall, J.N., Bollini, P., (2019). Structure, characterization, and catalytic properties of open-metal sites in metal organic frameworks. Reaction Chemistry Engineering, 4, 207–222. https://doi.org/10.1039/C8RE00228B10.1039/C8RE00228BSearch in Google Scholar

Halper, S.R., Do, L., Stork, J.R., Cohen, S.M. (2006). Topological Control in Heterometallic Metal-Organic Frameworks by Anion Templating and Metalloligand Design. Journal of the American Chemical Society, 128(47), 15255–15268. https://doi.org/10.1021/ja064548310.1021/ja064548317117878Search in Google Scholar

Hayashi, H., Côté, A.P., Furukawa, H., O’Keeffe, M., Yaghi, O.M., (2007). Zeolite A imidazolate frameworks. Nature Materials, 6, 501–506. https://doi.org/10.1038/nmat192710.1038/nmat192717529969Search in Google Scholar

Hendona, C.H., Walsh, A, (2015). A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Chemical Science, 6, 3674–3683. https://doi.org/10.1039/C5SC01489A10.1039/C5SC01489ASearch in Google Scholar

Henschel, A., Gedrich, K., Kraehnert, R., Kaskel, S. (2008). Catalytic properties of MIL-101. Chemical Communications, (35), 4192–4194. https://doi.org/10.1039/B718371B10.1039/b718371b18802526Search in Google Scholar

Hoffmann, F., Fröba, M. (2016). Network Topology. In S. Keskel (Ed.), The Chemistry of Metal-Organic Frameworks, (p. 5-38). Weinheim, Germany.10.1002/9783527693078.ch2Search in Google Scholar

Hohenberg, P., Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136, B864. https://doi.org/10.1103/PhysRev.136.B86410.1103/PhysRev.136.B864Search in Google Scholar

Horcajada, P., Surble, S., Serre, C., Hong, D.Y., Seo, Y.K., Chang, J.S., Greneche, J.M., Margiolaki, I., Ferey, G. (2007). Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chemical Communications, (27), 2820–2822. https://doi.org/10.1039/B704325B10.1039/B704325BSearch in Google Scholar

Hoskins, B. F., Robson, R. (1990). Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4’,4’’,4’’’-tetracyanotetraphenylmethane] BF4•xC6H5NO2. Journal of the American Chemical Society, 112(4), 1546–1554. https://doi.org/10.1021/ja00160a03810.1021/ja00160a038Search in Google Scholar

Hupp, J.T., Poeppelmeier, K.R. (2005), Better Living Through Nanopore Chemistry. Science, 2005(309), 2008–2009. https://doi.org/10.1126/science.111780810.1126/science.111780816179465Search in Google Scholar

Hwang, Y.K., Hong, D.Y., Chang, J.S., Jhung, S.H., Seo, Y.K., Kim, J., Vimont, A., Daturi, M., Serre C., Ferey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie International Edition, 47, 4144–4148. https://doi.org/10.1002/anie.20070599810.1002/anie.20070599818435442Search in Google Scholar

Hwang, Y.K., Hong, D.Y., Chang, J.S., Seo, H., Yoon, M., Kim, J., Jhung, S.H., Serre, C., Ferey, G. (2009). Selective sulfoxidation of aryl sulfides by coordinatively unsaturated metal centers in chromium carboxylate MIL-101. Applied Catalysis A: General, 358, 249–253. https://doi.org/10.1016/j.apcata.2009.02.01810.1016/j.apcata.2009.02.018Search in Google Scholar

Janiak, C., Vieth, J.K. (2010). MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New Journal of Chemistry, 34, 2366–2388. https://doi.org/10.1039/C0NJ00275E10.1039/c0nj00275eSearch in Google Scholar

Joaristi, A.M., Juan-Alcañiz, J., Serra-Crespo, P., Kapteijn, F., Gascon, J. (2012). Electrochemical Synthesis of Some Archetypical Zn2+, Cu2+, and Al3+ Metal Organic Frameworks. Crystal Growth & Design, 12(7), 3489–3498. https://doi.org/10.1021/cg300552w10.1021/cg300552wSearch in Google Scholar

Jung, D.W., Yang, D.A., Kim, J., Kim, J., Ahn, W.S. (2010). Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalton Transactions, 39, 2883–2887. https://doi.org/10.1039/b925088c10.1039/b925088c20200716Search in Google Scholar

Kang, Y.S., Lu, Y., Chen, K., Zhao, Y., Wang, P., Sun, W.Y. (2019). Metal-organic frameworks with catalytic centers: From synthesis to catalytic application. Coordination Chemistry Reviews, 378, 262–280. https://doi.org/10.1016/j.ccr.2018.02.00910.1016/j.ccr.2018.02.009Search in Google Scholar

Kaye, S.S., Long, J.R. (2008). Matrix Isolation Chemistry in a Porous Metal-Organic Framework: Photochemical Substitutions of N2 and H2 in Zn4O[(ƞ6-1,4-Benzenedicarboxylate)Cr(CO)3]3. Journal of the American Chemical Society, 130, 806–807. https://doi.org/10.1021/ja710210810.1021/ja710210818154339Search in Google Scholar

Khan, N.A., Lee, J.S., Jeon, J., Jun, C.H., Jhung, S.H. (2012). Phase-selective synthesis and phase-conversion of porous aluminum-benzenetricarboxylates with microwave irradiation. Microporous and Mesoporous Materials, 152, 235–239. https://doi.org/10.1016/j.micromeso.2011.11.02510.1016/j.micromeso.2011.11.025Search in Google Scholar

Kim, J., Bhattacharjee, S., Jeong, K.E., Jeong, S.Y., Ahn, W.S. (2009). Selective oxidation of tetralin over a chromium terephthalate metal organic framework, MIL-101. Chemical Communications, (26), 3904–3906. https://doi.org/10.1039/B902699A10.1039/b902699a19662247Search in Google Scholar

Kitagawa, S., Kondo, M. (1998). Functional Micropore Chemistry of Crystalline Metal Complex-Assembled Compounds. Bulletin of the Chemical Society of Japan, 71, 1739–1753. https://doi.org/10.1246/bcsj.71.173910.1246/bcsj.71.1739Search in Google Scholar

Klinowski, J., Paz, F.A.A., Silva, P., Rocha, J. (2011). Microwave-Assisted Synthesis of Metal-Organic Frameworks. Dalton Transactions, 40, 321–330. https://doi.org/10.1039/C0DT00708K10.1039/C0DT00708K20963251Search in Google Scholar

Kohn, W., Becke, A.D., Parr, R.G. (1996). Density Functional Theory of Electronic Structure. The Journal of Physical Chemistry, 100(31), 12974–12980. https://doi.org/10.1021/jp960669l10.1021/jp960669lSearch in Google Scholar

Kohn, W., Sham, L.J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, A1133. https://doi.org/10.1103/PhysRev.140.A113310.1103/PhysRev.140.A1133Search in Google Scholar

Kondo, M., Yoshitomi, T., Seki, K., Matsuzaka, H., Kitagawa, S. (1997). Three-Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4,4′-bpy)3(NO3)4]•xH2O}n (M = Co, Ni, Zn). Angewandte Chemie International Edition, 36(16), 1725–1727. https://doi.org/10.1002/anie.19971725110.1002/anie.199717251Search in Google Scholar

Kuppler, R.J., Timmons, D.J., Fang, Q.R., Li, J-R., Makal, T.A., Young, M.D., Yuan, D., Zhao, D., Zhuang, W., Zhou, H.C. (2009). Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 253, 3042–3066. https://doi.org/10.1016/j.ccr.2009.05.01910.1016/j.ccr.2009.05.019Search in Google Scholar

Lammert, M., Wharmby, M.T., Smolders, S., Bueken, B., Lieb, A., Lomachenko, K.A., De Vos, D., Stock, N. (2015). Cerium-based Metal Organic Frameworks with UiO-66 Architecture: Synthesis, Properties and Redox Catalytic Activity. Chemical Communications, 51, 12578–12581. https://doi.org/10.1039/C5CC02606G10.1039/C5CC02606G26154160Search in Google Scholar

Lee, Y.R., Kim, J., Ahn, W.S. (2013). Synthesis of metal-organic frameworks: A mini review. Korean Journal of Chemical Engineering, 30, 1667–1680. https://doi.org/10.1007/s11814-013-0140-610.1007/s11814-013-0140-6Search in Google Scholar

Li, H., Eddaoudi, M., Groy, T.L., Yaghi, O.M. (1998). Establishing Microporosity in Open Metal-Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC) 1,4-Benzenedicarboxylate). Journal of the American Chemical Society, 120(33), 8571–8572. https://doi.org/10.1021/ja981669x10.1021/ja981669xSearch in Google Scholar

Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402, 276–279. https://doi.org/10.1038/4624810.1038/46248Search in Google Scholar

Li, Z.Q., Qiu, L.G., Xu, T., Wu, Y., Wang, W., Wu, Z.Y., Jiang, X. (2009). Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Materials Letters, 63, 78–80. https://doi.org/10.1016/j.matlet.2008.09.01010.1016/j.matlet.2008.09.010Search in Google Scholar

Li, Y., Yang, R.T., (2006). Hydrogen Storage in Metal-Organic Frameworks by Bridged Hydrogen Spillover. Journal of the American Chemical Society, 128(25), 8136–8137. https://doi.org/10.1021/ja061681m10.1021/ja061681m16787068Search in Google Scholar

Li, Y.W., Yang, R.T. (2006). Significantly Enhanced Hydrogen Storage in Metal-Organic Frameworks via Spillover. Journal of the American Chemical Society, 128(3), 726–727. https://doi.org/10.1021/ja056831s10.1021/ja056831s16417355Search in Google Scholar

Liang, W., D’Alessandro, D.M. (2013). Microwave-assisted solvothermal synthesis of zirconium oxide based metal-organic frameworks. Chemical Communications, 49, 3706–3708. https://doi.org/10.1039/c3cc40368h10.1039/c3cc40368h23536171Search in Google Scholar

Lu, J., Paliwala, T., Lim, S.C., Yu, C., Niu, T., Jacobson, A.J. (1997). Coordination Polymers of Co(NCS)2 with Pyrazine and 4,4′-Bipyridine: Syntheses and Structures. Inorganic Chemistry, 36(5), 923–929. https://doi.org/10.1021/ic961158g10.1021/ic961158gSearch in Google Scholar

Lukose, B., Supronowicz, B., Petkov, P.St., Frenzel, J., Kuc, A.B., Seifert, G., Vayssilov, G.N., Heine, T. (2012). Structural properties of metal-organic frameworks within the density-functional based tight-binding method. Physica status solidi B, 249, 335–342. https://doi.org/10.1002/pssb.20110063410.1002/pssb.201100634Search in Google Scholar

Ma, S., Zhou, H.C., (2010). Gas storage in porous metal-organic frameworks for clean energy applications. Chemical Communications, 46, 44–53. https://doi.org/10.1039/B916295J10.1039/B916295J20024292Search in Google Scholar

Mahmoodi, N.M., Abdi, J., Oveisi, M., Asli, M.A., Vossoughi, M. (2018). Metal-organic framework (MIL-100 (Fe)): Synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling. Materials Research Bulletin, 100, 357–366. https://doi.org/10.1016/j.materresbull.2017.12.03310.1016/j.materresbull.2017.12.033Search in Google Scholar

Martin, R.L., Lin, L.C., Jariwala, K., Smit, B., Haranczyk, M. (2013). Mail-Order Metal-Organic Frameworks (MOFs): Designing Isoreticular MOF-5 Analogues Comprising Commercially Available Organic Molecules. The Journal of Physical Chemistry C, 117(23), 12159–12167. https://doi.org/10.1021/jp401920y10.1021/jp401920ySearch in Google Scholar

Mattesini, M., Soler, J.M., Ynduráin, F. (2006). Ab initio study of metal-organic framework-5 Zn4O(1,4-benzenedicarboxylate)3: An assessment of mechanical and spectroscopic properties, Physical Review B, 2006(73), 094111. https://doi.org/10.1103/PhysRevB.73.09411110.1103/PhysRevB.73.094111Search in Google Scholar

Millward, A.R., Yaghi, O.M. (2005). Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature. Journal of the American Chemical Society, 127(51), 17998–17999. https://doi.org/10.1021/ja057003210.1021/ja057003216366539Search in Google Scholar

Min Choi, K., Hyo Park, J., Ku Kang, J. (2015). Nanocrystalline MOFs embedded in the crystals of other MOFs and their multifunctional performance for molecular encapsulation and energy-carrier storage. Chemistry of Materials, 27, 5088–5093. https://doi.org/10.1021/acs.chemmater.5b0178610.1021/acs.chemmater.5b01786Search in Google Scholar

Miralda, C.M., Macias, E.E., Zhu, M., Ratnasamy, P., Carreon, M.A., (2012). Zeolitic Imidazole Framework-8 Catalysts in the Conversion of CO2 to Chloropropene Carbonate. ACS Catalysis, 2, 180–183. https://doi.org/10.1021/cs200638h10.1021/cs200638hSearch in Google Scholar

Morris, R.E. (2009). Ionothermal synthesis—ionic liquids as functional solvents in the preparation of crystalline materials. Chemical Communications, 21, 2990–2998. https://doi.org/10.1039/B902611H10.1039/b902611h19462065Search in Google Scholar

Mulfort, K.L., Hupp, J.T. (2007). Chemical Reduction of Metal-Organic Framework Materials as a Method to Enhance Gas Uptake and Binding. Journal of the American Chemical Society, 129(31), 9604–9605. https://doi.org/10.1021/ja074036410.1021/ja074036417636927Search in Google Scholar

Mulfort, K.L., Hupp, J.T. (2008). Alkali Metal Cation Effects on Hydrogen Uptake and Binding in Metal-Organic Frameworks. Inorganic Chemistry, 47(18), 7936–7938. https://doi.org/10.1021/ic800700h10.1021/ic800700h18549202Search in Google Scholar

Mueller, T., Ceder, G. (2005). A Density Functional Theory Study of Hydrogen Adsorption in MOF-5. The Journal of Physical Chemistry B, 109(38), 17974–17983. https://doi.org/10.1021/jp051202q10.1021/jp051202q16853307Search in Google Scholar

Ni, Z., Masel, R.I. (2006). Rapid Production of Metal-Organic Frameworks via Microwave-Assisted Solvothermal Synthesis. Journal of the American Chemical Society, 128(38), 12394–12395. https://doi.org/10.1021/ja063523110.1021/ja063523116984171Search in Google Scholar

Ni, Z., Masel, R.I. (2006). Rapid Production of Metal-Organic Frameworks via Microwave-Assisted Solvothermal Synthesis. Journal of the American Chemical Society, 128(38), 12394–12395. https://doi.org/10.1021/ja063523110.1021/ja0635231Search in Google Scholar

Nørskov, J.K., Abild-Pedersen, F., Studt, F. (2011). Density functional theory in surface chemistry and catalysis. Proceedings of the National Academy of Sciences, 108(3), 937–943. https://doi.org/10.1073/pnas.100665210810.1073/pnas.1006652108302468721220337Search in Google Scholar

Odoh, S.O., Cramer, C.J., Truhlar, D.G., Gagliardi, L. (2015). Quantum-Chemical Characterization of the Properties and Reactivities of Metal−Organic Frameworks. Chemical Reviews, 115(12), 6051–6111. https://doi.org/10.1021/cr500551h10.1021/cr500551h25872949Search in Google Scholar

Ohmori, O., Fujita, M. (2004). Heterogeneous catalysis of a coordination network: cyanosilylation of imines catalyzed by a Cd(II)-(4,4’-bipyridine) square grid complex. Chemical Communications, (14), 1586–1587. https://doi.org/10.1039/B406114B10.1039/B406114B15263930Search in Google Scholar

Oliveira, A., Mavrandonakis, A., de Lima, G.F., De Abreu, H.A. (2017). Cyanosilylation of Aldehydes Catalyzed by MIL-101(Cr): A Theoretical Investigation. Chemistry Select, 2, 7813–7820. https://doi.org/10.1002/slct.20170094610.1002/slct.201700946Search in Google Scholar

Pachfule, P., Das, R., Poddar, P., Banerjee, R. (2011). Solvothermal Synthesis, Structure, and Properties of Metal Organic Framework Isomers Derived from a Partially Fluorinated Link. Crystal Growth & Design, 11(4), 1215–1222. https://doi.org/10.1021/cg101414x10.1021/cg101414xSearch in Google Scholar

Park, K.S., Ni, Z., Cote, A.P., Choi, J. Y., Huang, R., Uribe-Romo, F.J., Chae, H.K., O’Keeffe, M., Yaghi, O.M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103, 10186–10191. https://doi.org/10.1073/pnas.060243910310.1073/pnas.0602439103150243216798880Search in Google Scholar

Parnham, E.R., Morris, R.E. (2007). Ionothermal Synthesis of Zeolites, Metal-Organic Frameworks, and Inorganic–Organic Hybrids. Accounts of Chemical Research, 40(10), 1005–1013. https://doi.org/10.1021/ar700025k10.1021/ar700025k17580979Search in Google Scholar

Pettinari, C., Marchetti, F., Mosca, N., Tosia, G., Drozdov, A. (2017). Application of Metal-organic Frameworks. Polymer International, 66, 731–744. https://doi.org/10.1002/pi.531510.1002/pi.5315Search in Google Scholar

Phikulthai, S., Injongkol, Y., Maihom, T., Treesukol, P., Maitarad, P., Tangsermvit, V., Kongpatpanich, K., Boekfa, B. (2017). Adsorption of Ammonia on Zirconium-Based Metal-Organic Framework: A Combined Experimental and Theoretical Study. Key Engineering Materials, 757, 93–97. https://doi.org/10.4028/www.scientific.net/KEM.757.9310.4028/www.scientific.net/KEM.757.93Search in Google Scholar

Piszczek, P., Radtke, A., Grodzicki, A., Wojtczak, A., Chojnacki, J. (2007). The new type of [Zr63-O)43-OH)4] cluster core: Crystal structure and spectral characterization of [Zr6O4(OH)4(OOCR)12] (R = But, C(CH3)2Et). Polyhedron, 26, 679–685. https://doi.org/10.1016/j.poly.2006.08.02510.1016/j.poly.2006.08.025Search in Google Scholar

Proch, S., Herrmannsdorfer, J., Kempe, R., Kern, C., Jess, A., Seyfarth, L., Senker, J. (2008). Pt@MOF-177: Synthesis, Room-Temperature Hydrogen Storage and Oxidation Catalysis. Chemistry A European Journal, 14, 8204–8212. https://doi.org/10.1002/chem.20080104310.1002/chem.20080104318666269Search in Google Scholar

Rosi, N.L., Eckert, J., Eddaoudi, M., Vodak, D.T., Kim, J., O’Keeffe, M., Yaghi, O.M. (2003). Hydrogen Storage in Microporous Metal-Organic Frameworks. Science, 300(5622), 1127–1129. https://doi.org/10.1126/science.108344010.1126/science.108344012750515Search in Google Scholar

Rowsell, J.L.C., Yaghi, O.M. (2004). Metal-organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 73, 3–14. https://doi.org/10.1016/j.micromeso.2004.03.03410.1016/j.micromeso.2004.03.034Search in Google Scholar

Sabo, M., Henschel, A., Frode, H., Klemm, E., Kaskel, S. (2007). Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties. Journal of Materials Chemistry, 17, 3827–3832. https://doi.org/10.1039/B706432B10.1039/b706432bSearch in Google Scholar

Sagara, T., Klassen, J., Ganz, E. (2005). Computational study of hydrogen binding by metal-organic framework-5. The Journal of Chemical Physics, 121, 12543–12547. https://doi.org/10.1063/1.180960810.1063/1.1809608Search in Google Scholar

Samanta, A., Furuta, T., Li, J. (2006). Theoretical assessment of the elastic constants and hydrogen storage capacity of some metal-organic framework materials. The Journal Of Chemical Physics, 125, 084714. https://doi.org/10.1063/1.233728710.1063/1.2337287Search in Google Scholar

Schaate, A., Roy, P., Godt, A., Lippke, J., Waltz, F., Wiebcke, M., Behrens, P. (2011). Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals. Chemistry A European Journal, 17, 6643–6651. https://doi.org/10.1002/chem.20100321110.1002/chem.201003211Search in Google Scholar

Schlichte, K., Kratzke, T., Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73, 81–88. https://doi.org/10.1016/j.micromeso.2003.12.02710.1016/j.micromeso.2003.12.027Search in Google Scholar

Schroder, F., Esken, D., Cokoja, M., van den Berg, M.W.E., Lebedev, O.I., van Tendeloo, G., Walaszek, B., Buntkowsky, G., Limbach, H.H., Chaudret, B., Fischer, R.A. (2008). Ruthenium Nanoparticles inside Porous [Zn4O(bdc)3] by Hydrogenolysis of Adsorbed [Ru(cod)(cot)]: A Solid-State Reference System for Surfactant-Stabilized Ruthenium Colloids. Journal of the American Chemical Society, 130(19), 6119–6130. https://doi.org/10.1021/ja078231u10.1021/ja078231uSearch in Google Scholar

Seminario, J.M. (1995). An Introduction to Density Functional Theory in Chemistry. Theoretical and Computational Chemistry, 2, 1–27. https://doi.org/10.1016/S1380-7323(05)80031-710.1016/S1380-7323(05)80031-7Search in Google Scholar

Serre, C., Millange, F., Thouvenot, C., Nogues, M., Marsolier, G., Louer, D., Ferey, G. (2002). Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)•{O2C-C6H4-CO2}•{HO2C-C6H4-CO2H}x•H2Oy. Journal of the American Chemical Society, 124, 13519–13526. https://doi.org/10.1021/ja027697410.1021/ja027697412418906Search in Google Scholar

Son, W.J., Kim, J., Kim, J., Ahn, W.S. (2008). Sonochemical synthesis of MOF-5. Chemical Communications, (48), 6336–6338. https://doi.org/10.1039/B814740J10.1039/b814740j19048147Search in Google Scholar

Stock, N., Biswas, S. (2012). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933–969. https://doi.org/10.1021/cr200304e10.1021/cr200304e22098087Search in Google Scholar

Sugimoto, T., Mizushima, T., Okamoto, A., Kurita, N. (2014). Structures and electronic properties of metal organic frameworks: DFT and ab initio FMO calculations for model systems. Chemical Physics Letters, 612, 295–301. https://doi.org/10.1016/j.cplett.2014.08.01210.1016/j.cplett.2014.08.012Search in Google Scholar

Suh, M.P., Park, H.J., Prasad, T.K., Lim, D.W. (2012). Hydrogen Storage in Metal-Organic Frameworks. Chemical Reviews, 112(2), 782–835. https://doi.org/10.1021/cr200274s10.1021/cr200274s22191516Search in Google Scholar

Supronowicz, B., Mavrandonakis, A., Heine, T. (2013). Interaction of Small Gases with the Unsaturated Metal Centers of the HKUST-1 Metal Organic Framework. The Journal of Physical Chemistry, 117(28), 14570–14578. https://doi.org/10.1021/jp401803710.1021/jp4018037Search in Google Scholar

Tröbs, L., Wilke, M., Szczerba, W., Reinholz, U., Emmerling, F. (2014). Mechanochemical synthesis and characterization of two new bismuth metal organic frameworks. CrystEngComm, 16, 5560–5565. https://doi.org/10.1039/C3CE42633E10.1039/C3CE42633ESearch in Google Scholar

Vandichel, M., Hajek, J., Vermoortele, F., Waroquier, M., De Vosb, D.E., Van Speybroeck, V. (2015). Active site engineering in UiO-66 type metal–organic frameworks by intentional creation of defects: a theoretical rationalization. CrystEngComm, 17, 395–406. https://doi.org/10.1039/C4CE01672F10.1039/C4CE01672FSearch in Google Scholar

Venkataramanan, N.S., Sahara, R., Mizuseki, H., Kawazoe, Y. (2009). Probing the Structure, Stability and Hydrogen Adsorption of Lithium Functionalized Isoreticular MOF-5 (Fe, Cu, Co, Ni and Zn) by Density Functional Theory. International Journal of Molecular Sciences, 10, 1601–1608. https://doi.org/10.3390/ijms1004160110.3390/ijms10041601268063619468328Search in Google Scholar

Vermoortele, F., Ameloot, R., Vimont, A., Serrec, C., De Vos, D. (2011). An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation. Chemical Communications, 47, 1521–1523. https://doi.org/10.1039/c0cc03038d10.1039/C0CC03038DSearch in Google Scholar

Vermoortele, F., Bueken, B., Bars, G.L., Voorde, B.V., Vandichel, M., Houthoofd, K., Vimont, A., Daturi, M., Waroquier, M., Speybroeck, V.V., Kirschhock, C., De Vos, D.E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal-Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465–11468. https://doi.org/10.1021/ja405078u10.1021/ja405078u23875753Search in Google Scholar

Vermoortele, F., Vandichel, M., de Voorde, B.V., Ameloot, R., Waroquier, M., Van Speybroeck, V., De Vos, D.E. (2012). Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks. Angewandte Chemie International Edition, 51, 1–5. https://doi.org/10.1002/anie.20110856510.1002/anie.20110856522488675Search in Google Scholar

Vimont, A., Goupil, J.M., Lavalley, J.C., Daturi, M., Surble, S., Serre, C., Millange, F., Ferey, G., Audebrand, N. (2006). Investigation of Acid Sites in a Zeotypic Giant Pores Chromium(III) Carboxylate. Journal of the American Chemical Society, 128(10), 3218–3227. https://doi.org/10.1021/ja056906s10.1021/ja056906s16522102Search in Google Scholar

Vimont, A., Leclerc, H., Mauge, F., Daturi, M., Lavalley, J.C., Surble, S., Serre, C., Ferey, G. (2007). Creation of Controlled Brønsted Acidity on a Zeotypic Mesoporous Chromium(III) Carboxylate by Grafting Water and Alcohol Molecules. The Journal of Physical Chemistry C, 111(1), 383–388. https://doi.org/10.1021/jp064686e10.1021/jp064686eSearch in Google Scholar

Vogiatzis, K.D., Polynski, M.V., Kirkland, J.K., Townsend, J., Hashemi, A., Liu, C., Pidko, E.A. (2019). Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. Chemical Reviews, 119(4), 2453–2523. https://doi.org/10.1021/acs.chemrev.8b0036110.1021/acs.chemrev.8b00361639613030376310Search in Google Scholar

Wang, Z., Cohen, S.M. (2007). Postsynthetic Covalent Modification of a Neutral Metal-Organic Framework. Journal of the American Chemical Society, 129, 12368–12369. https://doi.org/10.1021/ja074366o10.1021/ja074366o17880219Search in Google Scholar

Wang, Z., Cohen, S.M. (2009). Postsynthetic modification of metal–organic frameworks. Chemical Society Reviews, 38, 1315–1329. https://doi.org/10.1039/B802258P10.1039/b802258p19384440Search in Google Scholar

Wanga, Y., Zenga, Y., Wua, X., Mu, M., Chen, L. (2018). A novel Pd-Ni bimetallic synergistic catalyst on ZIF-8 for Sonogashira coupling reaction. Materials Letters, 220, 321–324. https://doi.org/10.1016/j.matlet.2018.03.00610.1016/j.matlet.2018.03.006Search in Google Scholar

Wells, A.F., (1954). The Geometrical Basis of Crystal Chemistry. Part 1. Acta Crystallographica, 7, 535–544. https://doi.org/10.1107/S0365110X5400182X10.1107/S0365110X5400182XSearch in Google Scholar

Wells, A.F., (1954). The Geometrical Basis of Crystal Chemistry. Part 2. Acta Crystallographica, 7, 545–554. https://doi.org/10.1107/S0365110X5400183110.1107/S0365110X54001831Search in Google Scholar

Wilmer, C.E., Leaf, M., Lee, C.Y., Farha, O.K., Hauser, B.G., Hupp, J.T., Snurr, R.Q. (2012). Large-scale screening of hypothetical metal–organic frameworks. Nature Chemistry, 4, 83–89. https://doi.org/10.1038/nchem.119210.1038/nchem.119222270624Search in Google Scholar

Wong-Foy, A.G., Matzger, A.J., Yaghi, O.M. (2006). Exceptional H2 Saturation Uptake in Microporous Metal-Organic Frameworks. Journal of the American Chemical Society, 128(11), 3494–3495. https://doi.org/10.1021/ja058213h10.1021/ja058213h16536503Search in Google Scholar

Wu, C.D., Hu, A., Zhang, L., Lin, W. (2005). A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis. Journal of the American Chemical Society, 127(25), 8940–8941. https://doi.org/10.1021/ja052431t10.1021/ja052431t15969557Search in Google Scholar

Yaghi, O.M., Li, H. (1995). Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. Journal of the American Chemical Society, 117(41), 10401–10402. https://doi.org/10.1021/ja00146a03310.1021/ja00146a033Search in Google Scholar

Yaghi, O.M., O’Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M., Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423, 705–714. https://doi.org/10.1038/nature0165010.1038/nature0165012802325Search in Google Scholar

Yoo, Y., Varela-Guerrero, V., Jeong, H.K. (2011). Isoreticular Metal-Organic Frameworks and Their Membranes with Enhanced Crack Resistance and Moisture Stability by Surfactant-Assisted Drying. Langmuir, 27(6), 2652–2657. https://doi.org/10.1021/la104775d10.1021/la104775d21299194Search in Google Scholar

Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., Sun, Y., Qin, J., Yang, X., Zhang, P., Wang, Q., Zou, L., Zhang, Y., Zhang, L., Fang, Y., Li, J., Zhou, H.C. (2018). Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30(37), 1704303. https://doi.org/10.1002/adma.20170430310.1002/adma.20170430329430732Search in Google Scholar

Zalomaeva, O.V., Chibiryaev, A.M., Kovalenko, K.A., Kholdeeva, O.A., Balzhinimaev, B.S., Fedin, V.P., (2013). Cyclic carbonates synthesis from epoxides and CO2 over metal–organic framework Cr-MIL-101. Journal of Catalysis, 298, 179–185. https://doi.org/10.1016/j.jcat.2012.11.02910.1016/j.jcat.2012.11.029Search in Google Scholar

Zhao, S., Chen, J. (2008). Metal organic framework-derived Ni/Zn/Co/NC composites as efficient catalyst for oxygen evolution reaction. Journal of Porous Materials, 26, 381–387. https://doi.org/10.1007/s10934-018-0612-510.1007/s10934-018-0612-5Search in Google Scholar

Zhao, L., Yang, Q., Ma, Q., Zhong, C., Mi, J., Liu, D. (2011). A force field for dynamic Cu-BTC metal-organic framework. Journal of Molecular Modeling, 17, 227–234. https://doi.org/10.1007/s00894-010-0720-x10.1007/s00894-010-0720-x20424876Search in Google Scholar

Zheng, B., Liang, Z., Li, G., Huo, Q., Liu, Y. (2010). Synthesis, Structure, and Gas Sorption Studies of a Three-Dimensional Metal-Organic Framework with NbO Topology. Crystal Growth & Design, 10(8), 3405–3409. https://doi.org/10.1021/cg100046j10.1021/cg100046jSearch in Google Scholar

Zhou, H-C., Long, J.R., Yaghi, O.M. (2012). Introduction to Metal−Organic Frameworks. Chemical Reviews, 112(2), 673–674. https://doi.org/10.1021/cr300014x10.1021/cr300014x22280456Search in Google Scholar

Zong, S., Zhang, Y., Lu, N., Ma, P., Wang, J., Shi, X-R. (2018). A DFT Screening of M-HKUST-1 MOFs for Nitrogen-Containing Compounds Adsorption. Nanomaterials, 8, 958–973. https://doi.org/10.3390/nano811095810.3390/nano8110958626648330463353Search in Google Scholar