[
Ahmadian, N., Khosravi, A. and Sarhadi, P. (2015). A new approach to adaptive control of multi-input multi-output systems using multiple models, Journal of Dynamic Systems, Measurement, and Control 137(9): 091009.10.1115/1.4030611
]Search in Google Scholar
[
Calise, A.J., Lee, S. and Sharma, M. (2001). Development of a reconfigurable flight control law for tailless aircraft, Journal of Guidance, Control, and Dynamics 24(5): 896–902.10.2514/2.4825
]Search in Google Scholar
[
Chen, F., Wu, Q., Tao, G. and Jiang, B. (2014). A reconfiguration control scheme for a quadrotor helicopter via combined multiple models, International Journal of Advanced Robotic Systems 11(8): 122–132.10.5772/58833
]Search in Google Scholar
[
Ciliz, M.K. and Tuncay, M. (2005). Comparative experiments with a multiple model based adaptive controller for a SCARA type direct drive manipulator, Robotica 23(6): 721–729.10.1017/S026357470500158X
]Search in Google Scholar
[
Falconí, G.P., Angelov, J. and Holzapfel, F. (2018). Adaptive fault-tolerant position control of a hexacopter subject to an unknown motor failure, International Journal of Applied Mathematics and Computer Science 28(2): 309–321, DOI: 10.2478/amcs-2018-0022.
]Ouvrir le DOISearch in Google Scholar
[
Hespanha, J., Liberzon, D., Stephen Morse, A., Anderson, B.D., Brinsmead, T.S. and De Bruyne, F. (2001). Multiple model adaptive control. Part 2: Switching, International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal 11(5): 479–496.
]Search in Google Scholar
[
Jain, T., Yamé, J.-J. and Sauter, D. (2012). Model-free reconfiguration mechanism for fault tolerance, International Journal of Applied Mathematics and Computer Science 22(1): 125–137, DOI: 10.2478/v10006-012-0009-6.
]Ouvrir le DOISearch in Google Scholar
[
Jiang, B., Guo, Y. and Shi, P. (2010). Adaptive reconfiguration scheme for flight control systems, Proceedings of the Institution of Mechanical Engineers I: Journal of Systems and Control Engineering 224(6): 713–723.10.1243/09596518JSCE894
]Search in Google Scholar
[
Li, J.L. and Yang, G.H. (2014). Development and prospect of adaptive fault-tolerant control, Control and Decision 29(11): 1921–1926.
]Search in Google Scholar
[
Liu, L., Yao, J., Ma, D. and Wang, G. (2019). Low-frequency learning-based robust adaptive control for electro-hydraulic position servo system, Acta Armamentarii 40(4): 737–743.
]Search in Google Scholar
[
Ma, J. (2003). Research on Intelligent Pump and Its Experiment System, PhD thesis, Beijing University of Aeronautics and Astronautics, Beijing.
]Search in Google Scholar
[
Manring, N.D. and Fales, R.C. (2019). Hydraulic Control Systems, John Wiley & Sons, New York.10.1002/9781119418528
]Search in Google Scholar
[
Mark, B., Andreas, S., Marco, M. and Rolf, I. (2010). Active fault tolerant control of an electro-hydraulic servo axis with a duplex-valve-system, IFAC Proceedings Volumes 43(18): 660–668.10.3182/20100913-3-US-2015.00042
]Search in Google Scholar
[
Maybeck, P.S. (1999). Multiple model adaptive algorithms for detecting and compensating sensor and actuator/surface failures in aircraft flight control systems, International Journal of Robust and Nonlinear Control 9(14): 1051–1070.10.1002/(SICI)1099-1239(19991215)9:14<1051::AID-RNC452>3.0.CO;2-0
]Search in Google Scholar
[
Mejdi, S., Messaoud, A. and Ben Abdennour, R. (2020). Fault tolerant multicontrollers for nonlinear systems: A real validation on a chemical process, International Journal of Applied Mathematics and Computer Science 30(1): 61–74, DOI: 10.34768/amcs-2020-0005.
]Ouvrir le DOISearch in Google Scholar
[
Milic, V., Situm, Z. and Essert, M. (2010). Robust H infinity position control synthesis of an electro-hydraulic servo system, ISA Transactions 49(4): 535–542.10.1016/j.isatra.2010.06.00420655534
]Search in Google Scholar
[
Mintsa, H.A., Venugopal, R., Kenne, J.P. and Belleau, C. (2011). Feedback linearization-based position control of an electrohydraulic servo system with supply pressure uncertainty, IEEE Transactions on Control Systems Technology 20(4): 1092–1099.10.1109/TCST.2011.2158101
]Search in Google Scholar
[
Narendra, S.K. and Balakrishnan, J. (1997). Adaptive control using multiple models, IEEE Transactions on Automatic Control 42(2): 171–187.10.1109/9.554398
]Search in Google Scholar
[
Niksefat, N. and Sepehri, N. (2001). Fault tolerant control of electrohydraulic servo positioning systems, Proceedings of the 2001 American Control Conference, Arlington, USA, pp. 4472–4477.
]Search in Google Scholar
[
Niksefat, N. and Sepehri, N. (2002). A QFT fault-tolerant control for electrohydraulic positioning systems, IEEE Transactions on Control Systems Technology 10(4): 626–632.10.1109/TCST.2002.1014682
]Search in Google Scholar
[
Pazera, M., Buciakowski, M. and Witczak., M. (2018). Robust multiple sensor fault-tolerant control for dynamic non-linear systems: Application to the aerodynamical twin-rotor system, International Journal of Applied Mathematics and Computer Science 28(2): 297–308, DOI: 10.2478/amcs-2018-0021.
]Ouvrir le DOISearch in Google Scholar
[
Salazar, J.C., Sanjuan, A., Nejjari, F. and Sarrate, R. (2020). Health-aware and fault-tolerant control of an octorotor UAV system based on actuator reliability, International Journal of Applied Mathematics and Computer Science 30(1): 47–59, DOI: 10.34768/amcs-2020-0004.
]Ouvrir le DOISearch in Google Scholar
[
Salleh, S., Rahmat, M.F., Othman, S.M. and Danapalasingam, K.A. (2015). Review on modeling and controller design of hydraulic actuator systems, International Journal on Smart Sensing & Intelligent Systems 8(1): 338–367.10.21307/ijssis-2017-762
]Search in Google Scholar
[
Sharifi, S., Tivay, A., Rezaei, S.M., Zareinejad, M. and Mollaei Dariani, B. (2018). Leakage fault detection in electro-hydraulic servo systems using a nonlinear representation learning approach, ISA Transactions 73: 154–164.10.1016/j.isatra.2018.01.01530686294
]Search in Google Scholar
[
Shin, D.H. and Kim, Y. (2004). Reconfigurable flight control system design using adaptive neural networks, IEEE Transactions on Control Systems Technology 12(1): 87–100.10.1109/TCST.2003.821957
]Search in Google Scholar
[
Si, G., Shen, Y., Wang, J., Cao, T. and Wan, M. (2020). Active disturbance rejection control of electro-hydraulic position servo system, Chinese Hydraulics & Pneumatics 12(3): 14–21.
]Search in Google Scholar
[
Sofianos, N.A. and Boutalis, Y.S. (2016). Robust adaptive multiple models based fuzzy control of nonlinear systems, Neurocomputing 173: 1733–1742.10.1016/j.neucom.2015.09.047
]Search in Google Scholar
[
Sun, W., Jian, D., Yuan, Y. and Yuan, Y. (2016). Fault simulation of electro-hydraulic servo system for fault self-healing based on immune principle, 2016 9th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, pp. 136–139.
]Search in Google Scholar
[
Tan, C., Tao, G. and Qi, R. (2014). An adaptive control scheme using multiple reference models, International Journal of Adaptive Control and Signal Processing 28(11): 1290–1298.10.1002/acs.2435
]Search in Google Scholar
[
Tan, C., Yao, X.and Tao, G. and Qi, R. (2012). A multiple-model based adaptive actuator failure compensation scheme for control of near-space vehicles, IFAC Proceedings Volumes 45(20): 594–599.10.3182/20120829-3-MX-2028.00241
]Search in Google Scholar
[
Tang, R. and Zhang, Q. (2011). Dynamic sliding mode control scheme for electro-hydraulic position servo system, Procedia Engineering 24: 28–32.10.1016/j.proeng.2011.11.2596
]Search in Google Scholar
[
Wang, C., Shang, Y., Jiao, Z. and Han, S. (2014). Nonlinear robust control of valve controlled electro-hydraulic position servo system, Journal of Beijing University of Aeronautics and Astronautics 40(12): 1736–1740.
]Search in Google Scholar
[
Wang, H. (2017). Research on an Adaptive Sliding Mode Control Strategy for Electro-Hydraulic Position Servo System, PhD thesis, Shanghai Jiao Tong University, Shanghai.
]Search in Google Scholar
[
Yao, J., Jiao, Z., Shang, Y. and Huang, C. (2010). Adaptive nonlinear optimal compensation control for electro-hydraulic load simulator, Chinese Journal of Aeronautics 23(6): 101–114.10.1016/S1000-9361(09)60275-2
]Search in Google Scholar
[
Yu, X. and Jiang, J. (2011). Hybrid fault-tolerant flight control system design against partial actuator failures, IEEE Transactions on Control Systems Technology 20(4): 871–886.10.1109/TCST.2011.2159606
]Search in Google Scholar
[
Yu-Ying, G. and Jiang, B. (2009). Multiple model-based adaptive reconfiguration control for actuator fault, Acta Automatica Sinica 35(11): 1452–1458.10.3724/SP.J.1004.2009.01452
]Search in Google Scholar
[
Yuan, H.B., Na, H.C. and Kim, Y.B. (2018). System identification and robust position control for electro-hydraulic servo system using hybrid model predictive control, Journal of Vibration and Control 24(18): 4145–4159.10.1177/1077546317721417
]Search in Google Scholar
[
Zhai, J., Fei, S. and Da, F. (2006). Intelligent control using multiple models based on on-line learning, Journal of Control Theory and Applications 4(4): 397–401.10.1007/s11768-006-5153-9
]Search in Google Scholar
[
Zhang, Z., Yang, Z., Xiong, S., Chen, S., Liu, S. and Zhang, X. (2021). Simple adaptive control-based reconfiguration design of cabin pressure control system, Complexity 2021(3): 1–16.10.1155/2021/6635571
]Search in Google Scholar