À propos de cet article

Citez

Beals EW. Bray-curtis ordination – an effective strategy for analysis of multivariate ecological data. Adv Ecol Res. 1984;14:1–55. https://doi.org/10.1016/S0065-2504(08)60168-3BealsEW. Bray-curtis ordination – an effective strategy for analysis of multivariate ecological data. Adv Ecol Res. 1984;14:155. https://doi.org/10.1016/S0065-2504(08)60168-310.1016/S0065-2504(08)60168-3Search in Google Scholar

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014 Aug 01; 30(15): 2114–2120. https://doi.org/10.1093/bioinformatics/btu170BolgerAMLohseMUsadelB. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014Aug01; 30(15): 21142120. https://doi.org/10.1093/bioinformatics/btu17010.1093/bioinformatics/btu170410359024695404Search in Google Scholar

Bracewell-Milnes T, Saso S, Nikolaou D, Norman-Taylor J, Johnson M, Thum MY. Investigating the effect of an abnormal cervico-vaginal and endometrial microbiome on assisted reproductive technologies: A systematic review. Am J Reprod Immunol. 2018 Nov;80(5):e13037. https://doi.org/10.1111/aji.13037Bracewell-MilnesTSasoSNikolaouDNorman-TaylorJJohnsonMThumMY. Investigating the effect of an abnormal cervico-vaginal and endometrial microbiome on assisted reproductive technologies: A systematic review. Am J Reprod Immunol. 2018Nov;80(5):e13037. https://doi.org/10.1111/aji.1303710.1111/aji.1303730133062Search in Google Scholar

Burnham KP, Overton WS. Robust estimation of population-size when capture probabilities vary among animals. Ecology. 1979 Oct;60(5):927–936. https://doi.org/10.2307/1936861BurnhamKPOvertonWS. Robust estimation of population-size when capture probabilities vary among animals. Ecology. 1979Oct;60(5):927936. https://doi.org/10.2307/193686110.2307/1936861Search in Google Scholar

Callahan BJ, Wong J, Heiner C, Oh S, Theriot CM, Gulati AS, McGill SK, Dougherty MK. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 2019 Oct 10;47(18):e103. https://doi.org/10.1093/nar/gkz569CallahanBJWongJHeinerCOhSTheriotCMGulatiASMcGillSKDoughertyMK. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 2019Oct10;47(18):e103. https://doi.org/10.1093/nar/gkz56910.1093/nar/gkz569676513731269198Search in Google Scholar

Chao A, Lee SM. Estimating the number of classes via sample coverage. J Am Stat Assoc. 1992 Mar;87(417):210–217. https://doi.org/10.1080/01621459.1992.10475194ChaoALeeSM. Estimating the number of classes via sample coverage. J Am Stat Assoc. 1992Mar;87(417):210217. https://doi.org/10.1080/01621459.1992.1047519410.1080/01621459.1992.10475194Search in Google Scholar

Chao A, Shen TJ. Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environ Ecol Stat. 2003;10(4):429–443. https://doi.org/10.1023/A:1026096204727ChaoAShenTJ. Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environ Ecol Stat. 2003;10(4):429443. https://doi.org/10.1023/A:102609620472710.1023/A:1026096204727Search in Google Scholar

Chao A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics. 1987 Dec;43(4):783–791. https://doi.org/10.2307/2531532ChaoA. Estimating the population size for capture-recapture data with unequal catchability. Biometrics. 1987Dec;43(4):783791. https://doi.org/10.2307/253153210.2307/2531532Search in Google Scholar

Chen J, Bittinger K, Charlson ES, Hoffmann C, Lewis J, Wu GD, Collman RG, Bushman FD, Li H. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics. 2012 Aug 15;28(16):2106–2113. https://doi.org/10.1093/bioinformatics/bts342ChenJBittingerKCharlsonESHoffmannCLewisJWuGDCollmanRGBushmanFDLiH. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics. 2012Aug15;28(16):21062113. https://doi.org/10.1093/bioinformatics/bts34210.1093/bioinformatics/bts342341339022711789Search in Google Scholar

Cho HW, Koo YJ, Min KJ, Hong JH, Lee JK. Pelvic inflammatory disease in virgin women with tubo-ovarian abscess: A single-center experience and literature review. J Pediatr Adolesc Gynecol. 2017 Apr;30(2):203–208. https://doi.org/10.1016/j.jpag.2015.08.001ChoHWKooYJMinKJHongJHLeeJK. Pelvic inflammatory disease in virgin women with tubo-ovarian abscess: A single-center experience and literature review. J Pediatr Adolesc Gynecol. 2017Apr;30(2):203208. https://doi.org/10.1016/j.jpag.2015.08.00110.1016/j.jpag.2015.08.00126260586Search in Google Scholar

Crossman SH. The challenge of pelvic inflammatory disease. Am Fam Physician. 2006 Mar 1;73(5):859–864.CrossmanSH. The challenge of pelvic inflammatory disease. Am Fam Physician. 2006Mar1;73(5):859864.Search in Google Scholar

Curry A, Williams T, Penny ML. Pelvic inflammatory disease: Diagnosis, management, and prevention. Am Fam Physician. 2019 Sep 15;100(6):357–364.CurryAWilliamsTPennyML. Pelvic inflammatory disease: Diagnosis, management, and prevention. Am Fam Physician. 2019Sep15;100(6):357364.Search in Google Scholar

Eade CR, Diaz C, Wood MP, Anastos K, Patterson BK, Gupta P, Cole AL, Cole AM. Identification and characterization of bacterial vaginosis-associated pathogens using a comprehensive cervical-vaginal epithelial coculture assay. PLoS One. 2012 Nov 15;7(11):e50106. https://doi.org/10.1371/journal.pone.0050106EadeCRDiazCWoodMPAnastosKPattersonBKGuptaPColeALColeAM. Identification and characterization of bacterial vaginosis-associated pathogens using a comprehensive cervical-vaginal epithelial coculture assay. PLoS One. 2012Nov15;7(11):e50106. https://doi.org/10.1371/journal.pone.005010610.1371/journal.pone.0050106Search in Google Scholar

Eastment MC, McClelland RS. Vaginal microbiota and susceptibility to HIV. AIDS. 2018 Mar 27;32(6):687–698. https://doi.org/10.1097/QAD.0000000000001768EastmentMCMcClellandRS. Vaginal microbiota and susceptibility to HIV. AIDS. 2018Mar27;32(6):687698. https://doi.org/10.1097/QAD.000000000000176810.1097/QAD.0000000000001768Search in Google Scholar

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011 Aug 15;27(16):2194–2200. https://doi.org/10.1093/bioinformatics/btr381EdgarRCHaasBJClementeJCQuinceCKnightR. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011Aug15;27(16):21942200. https://doi.org/10.1093/bioinformatics/btr38110.1093/bioinformatics/btr381Search in Google Scholar

Faith DP. Conservation evaluation and phylogenetic diversity. Biol Conserv. 1992;61(1):1–10. https://doi.org/10.1016/0006-3207(92)91201-3FaithDP. Conservation evaluation and phylogenetic diversity. Biol Conserv. 1992;61(1):110. https://doi.org/10.1016/0006-3207(92)91201-310.1016/0006-3207(92)91201-3Search in Google Scholar

Fettweis JM, Brooks JP, Serrano MG, Sheth NU, Girerd PH, Edwards DJ, Strauss JF, Jefferson KK, Buck GA. The Vaginal Microbiome Consortium. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology. 2014 Oct 01;160(10):2272–2282. https://doi.org/10.1099/mic.0.081034-0FettweisJMBrooksJPSerranoMGShethNUGirerdPHEdwardsDJStraussJFJeffersonKKBuckGA. The Vaginal Microbiome Consortium. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology. 2014Oct01;160(10):22722282. https://doi.org/10.1099/mic.0.081034-010.1099/mic.0.081034-0417832925073854Search in Google Scholar

Fettweis JM, Serrano MG, Sheth NU, Mayer CM, Glascock AL, Brooks JP, Jefferson KK, Buck GA. Vaginal Microbiome Consortium (additional members). Species-level classification of the vaginal microbiome. BMC Genomics. 2012 Dec;13(S8) Suppl 8:S17. https://doi.org/10.1186/1471-2164-13-S8-S17FettweisJMSerranoMGShethNUMayerCMGlascockALBrooksJPJeffersonKKBuckGA. Vaginal Microbiome Consortium (additional members). Species-level classification of the vaginal microbiome. BMC Genomics. 2012Dec;13(S8) Suppl 8:S17. https://doi.org/10.1186/1471-2164-13-S8-S1710.1186/1471-2164-13-S8-S17353571123282177Search in Google Scholar

Gradison M. Pelvic inflammatory disease. Am Fam Physician. 2012 Apr 15;85(8):791–796.GradisonM. Pelvic inflammatory disease. Am Fam Physician. 2012Apr15;85(8):791796.Search in Google Scholar

Graspeuntner S, Bohlmann MK, Gillmann K, Speer R, Kuenzel S, Mark H, Hoellen F, Lettau R, Griesinger G, König IR, et al. Microbiota-based analysis reveals specific bacterial traits and a novel strategy for the diagnosis of infectious infertility. PLoS One. 2018 Jan 9; 13(1):e0191047. https://doi.org/10.1371/journal.pone.0191047GraspeuntnerSBohlmannMKGillmannKSpeerRKuenzelSMarkHHoellenFLettauRGriesingerGKönigIR. Microbiota-based analysis reveals specific bacterial traits and a novel strategy for the diagnosis of infectious infertility. PLoS One. 2018Jan9; 13(1):e0191047. https://doi.org/10.1371/journal.pone.019104710.1371/journal.pone.0191047576008829315330Search in Google Scholar

Haggerty CL, Totten PA, Tang G, Astete SG, Ferris MJ, Norori J, Bass DC, Martin DH, Taylor BD, Ness RB. Identification of novel microbes associated with pelvic inflammatory disease and infertility. Sex Transm Infect. 2016 Sep;92(6):441–446. https://doi.org/10.1136/sextrans-2015-052285HaggertyCLTottenPATangGAsteteSGFerrisMJNororiJBassDCMartinDHTaylorBDNessRB. Identification of novel microbes associated with pelvic inflammatory disease and infertility. Sex Transm Infect. 2016Sep;92(6):441446. https://doi.org/10.1136/sextrans-2015-05228510.1136/sextrans-2015-052285501309926825087Search in Google Scholar

Hamady M, Lozupone C, Knight R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 2010 Jan;4(1):17–27. https://doi.org/10.1038/ismej.2009.97HamadyMLozuponeCKnightR. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 2010Jan;4(1):1727. https://doi.org/10.1038/ismej.2009.9710.1038/ismej.2009.97279755219710709Search in Google Scholar

Jennings LK, Krywko DM. Pelvic inflammatory disease [Internet]. Treasure Island (USA): Statpearls; 2020 [cited 2021 Jun 10]. Available from https://www.ncbi.nlm.nih.gov/books/NBK499959JenningsLKKrywkoDM. Pelvic inflammatory disease [Internet]. Treasure Island (USA): Statpearls; 2020[cited 2021 Jun 10]. Available from https://www.ncbi.nlm.nih.gov/books/NBK499959Search in Google Scholar

Kriesel JD, Bhatia AS, Barrus C, Vaughn M, Gardner J, Crisp RJ. Multiplex PCR testing for nine different sexually transmitted infections. Int J STD AIDS. 2016 Dec;27(14):1275–1282. https://doi.org/10.1177/0956462415615775KrieselJDBhatiaASBarrusCVaughnMGardnerJCrispRJ. Multiplex PCR testing for nine different sexually transmitted infections. Int J STD AIDS. 2016Dec;27(14):12751282. https://doi.org/10.1177/095646241561577510.1177/095646241561577526538551Search in Google Scholar

Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952 Dec;47(260):583–621. https://doi.org/10.1080/01621459.1952.10483441KruskalWHWallisWA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952Dec;47(260):583621. https://doi.org/10.1080/01621459.1952.1048344110.1080/01621459.1952.10483441Search in Google Scholar

Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013 Sep;31(9):814–821. https://doi.org/10.1038/nbt.2676LangilleMGIZaneveldJCaporasoJGMcDonaldDKnightsDReyesJAClementeJCBurkepileDEVega ThurberRLKnightR. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013Sep;31(9):814821. https://doi.org/10.1038/nbt.267610.1038/nbt.2676381912123975157Search in Google Scholar

Larsen B, Monif GRG. Understanding the bacterial flora of the female genital tract. Clin Infect Dis. 2001 Feb 15;32(4):e69–e77. https://doi.org/10.1086/318710LarsenBMonifGRG. Understanding the bacterial flora of the female genital tract. Clin Infect Dis. 2001Feb15;32(4):e69e77. https://doi.org/10.1086/31871010.1086/31871011181139Search in Google Scholar

Li T, Liu ZH, Li K, Bai HH. Evaluation of the vaginal microbiome in clinical diagnosis and management of vaginal infectious diseases. Chin Med J (Engl). 2019 May 5;132(9):1100–1103. https://doi.org/10.1097/CM9.0000000000000211LiTLiuZHLiKBaiHH. Evaluation of the vaginal microbiome in clinical diagnosis and management of vaginal infectious diseases. Chin Med J (Engl). 2019May5;132(9):11001103. https://doi.org/10.1097/CM9.000000000000021110.1097/CM9.0000000000000211659587430896565Search in Google Scholar

Lin J. Divergence measures based on the Shannon entropy. IEEE Trans Inf Theory. 1991 Jan;37(1):145–151. https://doi.org/10.1109/18.61115LinJ. Divergence measures based on the Shannon entropy. IEEE Trans Inf Theory. 1991Jan;37(1):145151. https://doi.org/10.1109/18.6111510.1109/18.61115Search in Google Scholar

Loeper N, Graspeuntner S, Rupp J. Microbiota changes impact on sexually transmitted infections and the development of pelvic inflammatory disease. Microbes Infect. 2018 Oct;20(9-10):505–511. https://doi.org/10.1016/j.micinf.2018.02.003LoeperNGraspeuntnerSRuppJ. Microbiota changes impact on sexually transmitted infections and the development of pelvic inflammatory disease. Microbes Infect. 2018Oct;20(9-10):505511. https://doi.org/10.1016/j.micinf.2018.02.00310.1016/j.micinf.2018.02.00329452257Search in Google Scholar

MacIntyre DA, Chandiramani M, Lee YS, Kindinger L, Smith A, Angelopoulos N, Lehne B, Arulkumaran S, Brown R, Teoh TG, et al. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci Rep. 2015 Aug;5(1):8988. https://doi.org/10.1038/srep08988MacIntyreDAChandiramaniMLeeYSKindingerLSmithAAngelopoulosNLehneBArulkumaranSBrownRTeohTG. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci Rep. 2015Aug;5(1):8988. https://doi.org/10.1038/srep0898810.1038/srep08988435568425758319Search in Google Scholar

Magurran AE. Measuring biological diversity. Hoboken (USA): Wiley-Blackwell; 2013.MagurranAE. Measuring biological diversity. Hoboken (USA): Wiley-Blackwell; 2013.Search in Google Scholar

Martín R, Miquel S, Langella P, Bermúdez-Humarán LG. The role of metagenomics in understanding the human microbiome in health and disease. Virulence. 2014 Apr;5(3):413–423. https://doi.org/10.4161/viru.27864MartínRMiquelSLangellaPBermúdez-HumaránLG. The role of metagenomics in understanding the human microbiome in health and disease. Virulence. 2014Apr;5(3):413423. https://doi.org/10.4161/viru.2786410.4161/viru.27864397986924429972Search in Google Scholar

Myers EW, Miller W. Optimal alignments in linear space. Comput Appl Biosci. 1988 Mar;4(1):11–17. https://doi.org/10.1093/bioinformatics/4.1.11MyersEWMillerW. Optimal alignments in linear space. Comput Appl Biosci. 1988Mar;4(1):1117. https://doi.org/10.1093/bioinformatics/4.1.1110.1093/bioinformatics/4.1.113382986Search in Google Scholar

Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket CO, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA. 2011 Mar 15;108(Supplement 1):4680–4687. https://doi.org/10.1073/pnas.1002611107RavelJGajerPAbdoZSchneiderGMKoenigSSKMcCulleSLKarlebachSGorleRRussellJTacketCO. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA. 2011Mar15;108(Supplement 1):46804687. https://doi.org/10.1073/pnas.100261110710.1073/pnas.1002611107306360320534435Search in Google Scholar

Reekie J, Donovan B, Guy R, Hocking JS, Kaldor JM, Mak DB, Pearson S, Preen D, Stewart L, Ward J, et al. Chlamydia and Reproductive Health Outcome Investigators; Chlamydia and Reproductive Health Outcome Investigators. Risk of pelvic inflammatory disease in relation to chlamydia and gonorrhea testing, repeat testing, and positivity: A population-based cohort study. Clin Infect Dis. 2018 Jan 18;66(3):437–443. https://doi.org/10.1093/cid/cix769ReekieJDonovanBGuyRHockingJSKaldorJMMakDBPearsonSPreenDStewartLWardJ. Chlamydia and Reproductive Health Outcome Investigators; Chlamydia and Reproductive Health Outcome Investigators. Risk of pelvic inflammatory disease in relation to chlamydia and gonorrhea testing, repeat testing, and positivity: A population-based cohort study. Clin Infect Dis. 2018Jan18;66(3):437443. https://doi.org/10.1093/cid/cix76910.1093/cid/cix76929136127Search in Google Scholar

Reid G, Beuerman D, Heinemann C, Bruce AW. Probiotic Lactobacillus dose required to restore and maintain a normal vaginal flora. FEMS Immunol Med Microbiol. 2001 Dec;32(1):37–41. https://doi.org/10.1111/j.1574-695X.2001.tb00531.xReidGBeuermanDHeinemannCBruceAW. Probiotic Lactobacillus dose required to restore and maintain a normal vaginal flora. FEMS Immunol Med Microbiol. 2001Dec;32(1):3741. https://doi.org/10.1111/j.1574-695X.2001.tb00531.x10.1111/j.1574-695X.2001.tb00531.x11750220Search in Google Scholar

Revzin MV, Mathur M, Dave HB, Macer ML, Spektor M. Pelvic inflammatory disease: multimodality imaging approach with clinical-pathologic correlation. Radiographics. 2016 Sep;36(5):1579–1596. https://doi.org/10.1148/rg.2016150202RevzinMVMathurMDaveHBMacerMLSpektorM. Pelvic inflammatory disease: multimodality imaging approach with clinical-pathologic correlation. Radiographics. 2016Sep;36(5):15791596. https://doi.org/10.1148/rg.201615020210.1148/rg.201615020227618331Search in Google Scholar

Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016 Oct 18;4: e2584. https://doi.org/10.7717/peerj.2584RognesTFlouriTNicholsBQuinceCMahéF. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016Oct18;4: e2584. https://doi.org/10.7717/peerj.258410.7717/peerj.2584507569727781170Search in Google Scholar

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60SegataNIzardJWaldronLGeversDMiropolskyLGarrettWSHuttenhowerC. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r6010.1186/gb-2011-12-6-r60321884821702898Search in Google Scholar

Sharma H, Tal R, Clark N, Segars J. Microbiota and pelvic inflammatory disease. Semin Reprod Med. 2014 Jan 3;32(01):043–049. ttps://doi.org/10.1055/s-0033-1361822SharmaHTalRClarkNSegarsJ. Microbiota and pelvic inflammatory disease. Semin Reprod Med. 2014Jan3;32(01):043049. https://doi.org/10.1055/s-0033-136182210.1055/s-0033-1361822414845624390920Search in Google Scholar

Srinivasan S, Hoffman NG, Morgan MT, Matsen FA, Fiedler TL, Hall RW, Ross FJ, McCoy CO, Bumgarner R, Marrazzo JM, et al. Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS One. 2012 Jun 18;7(6):e37818. https://doi.org/10.1371/journal.pone.0037818SrinivasanSHoffmanNGMorganMTMatsenFAFiedlerTLHallRWRossFJMcCoyCOBumgarnerRMarrazzoJM. Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS One. 2012Jun18;7(6):e37818. https://doi.org/10.1371/journal.pone.003781810.1371/journal.pone.0037818337771222719852Search in Google Scholar

Tachedjian G, Aldunate M, Bradshaw CS, Cone RA. The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res Microbiol. 2017 Nov;168(9-10):782–792. https://doi.org/10.1016/j.resmic.2017.04.001TachedjianGAldunateMBradshawCSConeRA. The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res Microbiol. 2017Nov;168(9-10):782792. https://doi.org/10.1016/j.resmic.2017.04.00110.1016/j.resmic.2017.04.00128435139Search in Google Scholar

Taylor BD, Ness RB, Darville T, Haggerty CL. Microbial correlates of delayed care for pelvic inflammatory disease. Sex Transm Dis. 2011 May;38(5):434–438. https://doi.org/10.1097/OLQ.0b013e3181ffa7c7TaylorBDNessRBDarvilleTHaggertyCL. Microbial correlates of delayed care for pelvic inflammatory disease. Sex Transm Dis. 2011May;38(5):434438. https://doi.org/10.1097/OLQ.0b013e3181ffa7c710.1097/OLQ.0b013e3181ffa7c7365773121124257Search in Google Scholar

Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007 Oct;449 (7164): 804–810. https://doi.org/10.1038/nature06244TurnbaughPJLeyREHamadyMFraser-LiggettCMKnightRGordonJI. The human microbiome project. Nature. 2007Oct;449 (7164): 804810. https://doi.org/10.1038/nature0624410.1038/nature06244370943917943116Search in Google Scholar

van de Wijgert JHHM. The vaginal microbiome and sexually transmitted infections are interlinked: consequences for treatment and prevention. PLoS Med. 2017 Dec 27;14(12):e1002478. https://doi.org/10.1371/journal.pmed.1002478van de WijgertJHHM. The vaginal microbiome and sexually transmitted infections are interlinked: consequences for treatment and prevention. PLoS Med. 2017Dec27;14(12):e1002478. https://doi.org/10.1371/journal.pmed.100247810.1371/journal.pmed.1002478574490529281632Search in Google Scholar

Virtanen S, Kalliala I, Nieminen P, Salonen A. Comparative analysis of vaginal microbiota sampling using 16S rRNA gene analysis. PLoS One. 2017 Jul 19;12(7):e0181477. https://doi.org/10.1371/journal.pone.0181477VirtanenSKallialaINieminenPSalonenA. Comparative analysis of vaginal microbiota sampling using 16S rRNA gene analysis. PLoS One. 2017Jul19;12(7):e0181477. https://doi.org/10.1371/journal.pone.018147710.1371/journal.pone.0181477551705128723942Search in Google Scholar

Walker CK, Wiesenfeld HC. Antibiotic therapy for acute pelvic inflammatory disease: the 2006 Centers for Disease Control and Prevention sexually transmitted diseases treatment guidelines. Clin Infect Dis. 2007 Apr 01;44(Supplement_3):S111–S122. https://doi.org/10.1086/511424WalkerCKWiesenfeldHC. Antibiotic therapy for acute pelvic inflammatory disease: the 2006 Centers for Disease Control and Prevention sexually transmitted diseases treatment guidelines. Clin Infect Dis. 2007Apr01;44(Supplement_3):S111S122. https://doi.org/10.1086/51142410.1086/51142417342664Search in Google Scholar

Wang Y, Zhang Y, Zhang Q, Chen H, Feng Y. Characterization of pelvic and cervical microbiotas from patients with pelvic inflammatory disease. J Med Microbiol. 2018 Oct 01;67(10):1519–1526. https://doi.org/10.1099/jmm.0.000821WangYZhangYZhangQChenHFengY. Characterization of pelvic and cervical microbiotas from patients with pelvic inflammatory disease. J Med Microbiol. 2018Oct01;67(10):15191526. https://doi.org/10.1099/jmm.0.00082110.1099/jmm.0.00082130113305Search in Google Scholar

Wheeler TJ, Eddy SR. nhmmer: DNA homology search with profile HMMs. Bioinformatics. 2013 Oct 01;29(19):2487–2489. https://doi.org/10.1093/bioinformatics/btt403WheelerTJEddySR. nhmmer: DNA homology search with profile HMMs. Bioinformatics. 2013Oct01;29(19):24872489. https://doi.org/10.1093/bioinformatics/btt40310.1093/bioinformatics/btt403377710623842809Search in Google Scholar

White BA, Creedon DJ, Nelson KE, Wilson BA. The vaginal microbiome in health and disease. Trends Endocrinol Metab. 2011 Oct; 22(10):389–393. https://doi.org/10.1016/j.tem.2011.06.001WhiteBACreedonDJNelsonKEWilsonBA. The vaginal microbiome in health and disease. Trends Endocrinol Metab. 2011Oct; 22(10):389393. https://doi.org/10.1016/j.tem.2011.06.00110.1016/j.tem.2011.06.001318333921757370Search in Google Scholar

Witkin SS, Linhares IM. Why do lactobacilli dominate the human vaginal microbiota? BJOG. 2017 Mar;124(4):606–611. https://doi.org/10.1111/1471-0528.14390WitkinSSLinharesIM. Why do lactobacilli dominate the human vaginal microbiota?BJOG. 2017Mar;124(4):606611. https://doi.org/10.1111/1471-0528.1439010.1111/1471-0528.1439028224747Search in Google Scholar

Ye Y, Doak TG. A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. PLOS Comput Biol. 2009 Aug 14;5(8):e1000465. https://doi.org/10.1371/journal.pcbi.1000465YeYDoakTG. A parsimony approach to biological pathway reconstruction/inference for genomes and metagenomes. PLOS Comput Biol. 2009Aug14;5(8):e1000465. https://doi.org/10.1371/journal.pcbi.100046510.1371/journal.pcbi.1000465271446719680427Search in Google Scholar

Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017 May 01;67(5):1613–1617. https://doi.org/10.1099/ijsem.0.001755YoonSHHaSMKwonSLimJKimYSeoHChunJ. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017May01;67(5):16131617. https://doi.org/10.1099/ijsem.0.00175510.1099/ijsem.0.001755556354428005526Search in Google Scholar

Yuan M, Breitkopf SB, Yang X, Asara JM. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc. 2012 May;7(5):872–881. https://doi.org/10.1038/nprot.2012.024YuanMBreitkopfSBYangXAsaraJM. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc. 2012May;7(5):872881. https://doi.org/10.1038/nprot.2012.02410.1038/nprot.2012.024368549122498707Search in Google Scholar

eISSN:
2544-4646
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Microbiology and Virology