À propos de cet article

Citez

Abdel-Monem N, Abdel-Azeem AM, El Ashry ESH, Ghareeb DA, Nabil-Adam A. Assessment of secondary metabolites from marinederived fungi as antioxidant. Open J Med Chem. 2013;03(03):60–73. https:/doi.org/10.4236/ojmc.2013.33009Abdel-MonemNAbdel-AzeemAMEl AshryESHGhareebDANabil-AdamAAssessment of secondary metabolites from marinederived fungi as antioxidant. Open J Med Chem. 2013;03(03):6073. https:/doi.org/10.4236/ojmc.2013.3300910.4236/ojmc.2013.33009Search in Google Scholar

Abo-Elmagd HI. Evaluation and optimization of antioxidant potentiality of Chaetomium madrasense AUMC 9376. J Genet Eng Biotechnol. 2014;12(1):21–26. https:/doi.org/10.1016/j.jgeb.2014.03.002Abo-ElmagdHIEvaluation and optimization of antioxidant potentiality of Chaetomium madrasense AUMC 9376. J Genet Eng Biotechnol. 2014;12(1):2126. https:/doi.org/10.1016/j.jgeb.2014.03.00210.1016/j.jgeb.2014.03.002Search in Google Scholar

Bai ZQ, Lin X, Wang Y, Wang J, Zhou X, Yang B, Liu J, Yang X, Wang Y, Liu Y. New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius. Fitoterapia. 2014;95:194–202. https:/doi.org/10.1016/j.fitote.2014.03.021BaiZQLinXWangYWangJZhouXYangBLiuJYangXWangYLiuYNew phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius.Fitoterapia. 2014;95:194202. https:/doi.org/10.1016/j.fitote.2014.03.02110.1016/j.fitote.2014.03.02124704337Search in Google Scholar

Balcells M, Canela R, Coll J, Sanchís V, Torres M. Effect of fungal metabolites and some derivatives against Tribolium castaneum (Herbst) and Nezara viridula (L.). Pestic Sci. 1995;45(4):319–323. https:/doi.org/10.1002/ps.2780450405BalcellsMCanelaRCollJSanchísVTorresMEffect of fungal metabolites and some derivatives against Tribolium castaneum (Herbst) and Nezara viridula (L.). Pestic Sci. 1995;45(4):319323. https:/doi.org/10.1002/ps.278045040510.1002/ps.2780450405Search in Google Scholar

Brakhage AA, Schroeckh V. Fungal secondary metabolites – Strategies to activate silent gene clusters. Fungal Genet Biol. 2011;48(1): 15–22. https:/doi.org/10.1016/j.fgb.2010.04.004BrakhageAASchroeckhVFungal secondary metabolites – Strategies to activate silent gene clusters. Fungal Genet Biol. 2011;48(1): 1522. https:/doi.org/10.1016/j.fgb.2010.04.00410.1016/j.fgb.2010.04.00420433937Search in Google Scholar

Chen XW, Li CW, Cui CB, Hua W, Zhu TJ, Gu QQ. Nine new and five known polyketides derived from a deep sea-sourced Aspergillus sp. 16-02-1. Mar Drugs. 2014;12(6):3116–3137. https:/doi.org/10.3390/md12063116ChenXWLiCWCuiCBHuaWZhuTJGuQQNine new and five known polyketides derived from a deep sea-sourced Aspergillus sp. 16-02-1. Mar Drugs. 2014;12(6):31163137. https:/doi.org/10.3390/md1206311610.3390/md12063116407156824871461Search in Google Scholar

Cheshmi F, Kazerouni F, Omrani MD, Rahimipour A, Shanaki M, Dehghan-Nayeri N, Younesian O, Rezapour Kalkhoran M. Effect of emodin on expression of VEGF-A and VEGFR_2 genes in human breast carcinoma MCF-7 Cell. Int J Cancer Manag. 2017;10(7):e8095. https:/doi.org/10.5812/ijcm.8095CheshmiFKazerouniFOmraniMDRahimipourAShanakiMDehghan-NayeriNYounesianORezapour KalkhoranMEffect of emodin on expression of VEGF-A and VEGFR_2 genes in human breast carcinoma MCF-7 Cell. Int J Cancer Manag.2017;10(7):e8095. https:/doi.org/10.5812/ijcm.809510.5812/ijcm.8095Search in Google Scholar

CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard – Ninth Edition. CLSI document M07-A9. Wayne (USA): Clinical and Laboratory Standards Institute; 2012.CLSIMethods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard – Ninth Edition. CLSI document M07-A9. Wayne (USA): Clinical and Laboratory Standards Institute; 2012.Search in Google Scholar

Despot DJ, Kocsubé S, Bencsik O, Kecskeméti A, Szekeres A, Vágvölgyi C, Varga J, Klarić MŠ. Species diversity and cytotoxic potency of airborne sterigmatocystin-producing Aspergilli from the section Versicolores. Sci Total Environ. 2016;562:296–304. https:/doi.org/10.1016/j.scitotenv.2016.03.183DespotDJKocsubéSBencsikOKecskemétiASzekeresAVágvölgyiCVargaJKlarićSpecies diversity and cytotoxic potency of airborne sterigmatocystin-producing Aspergilli from the section Versicolores.Sci Total Environ.2016;562:296304. https:/doi.org/10.1016/j.scitotenv.2016.03.18310.1016/j.scitotenv.2016.03.18327100010Search in Google Scholar

Despot DJ, Kocsubé S, Bencsik O, Kecskeméti A, Szekeres A, Vágvölgyi C, Varga J, Klarić MŠ. New sterigmatocystin-producing species of Aspergillus section Versicolores from indoor air in Croatia. Mycol Prog. 2017;16(1):63–72. https:/doi.org/10.1007/s11557-016-1250-4DespotDJKocsubéSBencsikOKecskemétiASzekeresAVágvölgyiCVargaJKlarićNew sterigmatocystin-producing species of Aspergillus section Versicolores from indoor air in Croatia. Mycol Prog.2017;16(1):6372. https:/doi.org/10.1007/s11557-016-1250-410.1007/s11557-016-1250-4Search in Google Scholar

Dewi RT, Tachibana S, Itoh K, Ilyas M. Isolation of antioxidant compounds from Aspergillus terreus LS01. J Microbial Biochem Technol. 2012;4:010–014.DewiRTTachibanaSItohKIlyasMIsolation of antioxidant compounds from Aspergillus terreus LS01. J Microbial Biochem Technol. 2012;4:010014.10.4172/1948-5948.1000065Search in Google Scholar

Dhankhar S, Kumar S, Dhankhar S, Yadav JP. Antioxidant activity of fungal endophytes isolated from salvadora oleoides decne. Int J Pharm Pharm Sci. 2012;4:380–385.DhankharSKumarSDhankharSYadavJPAntioxidant activity of fungal endophytes isolated from salvadora oleoides decne. Int J Pharm Pharm Sci.2012;4:380385.Search in Google Scholar

Dudonné S, Vitrac X, Coutière P, Woillez M, Mérillon JM. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem. 2009;57(5):1768–1774. https:/doi.org/10.1021/jf803011rDudonnéSVitracXCoutièrePWoillezMMérillonJMComparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem.2009;57(5):17681774. https:/doi.org/10.1021/jf803011r10.1021/jf803011r19199445Search in Google Scholar

Ebada SS, El-Neketi M, Ebrahim W, Mándi A, Kurtán T, Kalscheuer R, Müller WEG, Proksch P. Cytotoxic secondary metabolites from the endophytic fungus Aspergillus versicolor KU258497. Phytochem Lett. 2018;24:88–93. https:/doi.org/10.1016/j.phytol.2018.01.010EbadaSSEl-NeketiMEbrahimWMándiAKurtánTKalscheuerRMüllerWEGProkschPCytotoxic secondary metabolites from the endophytic fungus Aspergillus versicolor KU258497. Phytochem Lett.2018;24:8893. https:/doi.org/10.1016/j.phytol.2018.01.01010.1016/j.phytol.2018.01.010Search in Google Scholar

Floegel A, Kim DO, Chung SJ, Koo SI, Chun OK. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compos Anal. 2011;24(7):1043–1048. https:/doi.org/10.1016/j.jfca.2011.01.008FloegelAKimDOChungSJKooSIChunOKComparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compos Anal.2011;24(7):10431048. https:/doi.org/10.1016/j.jfca.2011.01.00810.1016/j.jfca.2011.01.008Search in Google Scholar

Gan RY, Kuang L, Xu XR, Zhang Y, Xia EQ, Song FL, Li HB. Screening of natural antioxidants from traditional Chinese medicinal plants associated with treatment of rheumatic disease. Molecules. 2010;15(9):5988–5997. https:/doi.org/10.3390/molecules15095988GanRYKuangLXuXRZhangYXiaEQSongFLLiHBScreening of natural antioxidants from traditional Chinese medicinal plants associated with treatment of rheumatic disease. Molecules. 2010;15(9):59885997. https:/doi.org/10.3390/molecules1509598810.3390/molecules15095988625776920877204Search in Google Scholar

Gautier M, Normand AC, Ranque S. Previously unknown species of Aspergillus. Clin Microbiol Infect. 2016;22(8):662–669. https:/doi.org/10.1016/j.cmi.2016.05.013GautierMNormandACRanqueSPreviously unknown species of AspergillusClin Microbiol Infect.2016;22(8):662669. https:/doi.org/10.1016/j.cmi.2016.05.01310.1016/j.cmi.2016.05.01327263029Search in Google Scholar

Hatano T, Uebayashi H, Ito H, Shiota S, Tsuchiya T, Yoshida T. Phenolic constituents of Cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin-resistant Staphylococcus aureus. Chem Pharm Bull (Tokyo). 1999;47(8):1121–1127. https:/doi.org/10.1248/cpb.47.1121HatanoTUebayashiHItoHShiotaSTsuchiyaTYoshidaTPhenolic constituents of Cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin-resistant Staphylococcus aureusChem Pharm Bull (Tokyo). 1999;47(8):11211127. https:/doi.org/10.1248/cpb.47.112110.1248/cpb.47.112110478467Search in Google Scholar

Izhaki I. Emodin – a secondary metabolite with multiple ecological functions in higher plants. New Phytol. 2002;155(2):205–217. https:/doi.org/10.1046/j.1469-8137.2002.00459.xIzhakiIEmodin – a secondary metabolite with multiple ecological functions in higher plants. New Phytol. 2002;155(2):205217. https:/doi.org/10.1046/j.1469-8137.2002.00459.x10.1046/j.1469-8137.2002.00459.xSearch in Google Scholar

Jakovljević V, Milićević J, Stojanović J, Solujić S, Vrvić M. Anti-oxidant activity of ethanolic extract of Penicillium chrysogenum and Penicillium fumiculosum. Hem Ind. 2014;68(1):43–49. https:/doi.org/10.2298/HEMIND121102027JJakovljevićVMilićevićJStojanovićJSolujićSVrvićMAnti-oxidant activity of ethanolic extract of Penicillium chrysogenum and Penicillium fumiculosum.Hem Ind.2014;68(1):4349. https:/doi.org/10.2298/HEMIND121102027J10.2298/HEMIND121102027JSearch in Google Scholar

Jurjevic Z, Peterson SW, Horn BW. Aspergillus section Versicolores: nine new species and multilocus DNA sequence based phylogeny. IMA Fungus. 2012;3(1):59–795. https:/doi.org/10.5598/imafungus.2012.03.01.07JurjevicZPetersonSWHornBWAspergillus section Versicolores: nine new species and multilocus DNA sequence based phylogeny. IMA Fungus. 2012;3(1):59795. https:/doi.org/10.5598/imafungus.2012.03.01.0710.5598/imafungus.2012.03.01.07339910323155501Search in Google Scholar

Jurjević Ž, Peterson SW, Solfrizzo M, Peraica M. Sterigmatocystin production by nine newly described Aspergillus species in section Versicolores grown on two different media. Mycotoxin Res. 2013;29(3):141–145. https:/doi.org/10.1007/s12550-013-0160-4JurjevićŽPetersonSWSolfrizzoMPeraicaMSterigmatocystin production by nine newly described Aspergillus species in section Versicolores grown on two different media. Mycotoxin Res.2013;29(3):141145. https:/doi.org/10.1007/s12550-013-0160-410.1007/s12550-013-0160-423417508Search in Google Scholar

Keller NP, Turner G, Bennett JW. Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol. 2005;3(12):937–947. https:/doi.org/10.1038/nrmicro1286KellerNPTurnerGBennettJWFungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol. 2005;3(12):937947. https:/doi.org/10.1038/nrmicro128610.1038/nrmicro1286Search in Google Scholar

Kim YM, Lee CH, Kim HG, Lee HS. Anthraquinones isolated from Cassia tora (Leguminosae) seed show an antifungal property against phytopathogenic fungi. J Agric Food Chem. 2004;52(20):6096–6100. https:/doi.org/10.1021/jf049379pKimYMLeeCHKimHGLeeHSAnthraquinones isolated from Cassia tora (Leguminosae) seed show an antifungal property against phytopathogenic fungi. J Agric Food Chem. 2004;52(20):60966100. https:/doi.org/10.1021/jf049379p10.1021/jf049379pSearch in Google Scholar

Knafl D, Tobudic S, Cheng SC, Bellamy DR, Thalhammer F. Dalbavancin reduces biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE). Eur J Clin Microbiol Infect Dis. 2017;36(4):677–680. https:/doi.org/10.1007/s10096-016-2845-zKnaflDTobudicSChengSCBellamyDRThalhammerFDalbavancin reduces biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE). Eur J Clin Microbiol Infect Dis. 2017;36(4):677680. https:/doi.org/10.1007/s10096-016-2845-z10.1007/s10096-016-2845-zSearch in Google Scholar

Kumaresan S, Karthi V, Senthilkumar V, Balakumar BS, Stephen A. Biochemical constituents and antioxidant potential of endophytic fungi isolated from the leaves of Azadirachta indica A. Juss (Neem) from Chennai, India. J. Acad. Ind. Res. 2015;3:355–361.KumaresanSKarthiVSenthilkumarVBalakumarBSStephenABiochemical constituents and antioxidant potential of endophytic fungi isolated from the leaves of Azadirachta indica A. Juss (Neem) from Chennai, India. J. Acad. Ind. Res. 2015;3:355361.Search in Google Scholar

Lehner SM, Neumann NKN, Sulyok M, Lemmens M, Krska R, Schuhmacher R. Evaluation of LC-high-resolution FT-Orbitrap MS for the quantification of selected mycotoxins and the simultaneous screening of fungal metabolites in food. Food Additives & Contaminants: Part A. 2011;28(10):1457–1468. https:/doi.org/10.1080/19440049.2011.599340LehnerSMNeumannNKNSulyokMLemmensMKrskaRSchuhmacherREvaluation of LC-high-resolution FT-Orbitrap MS for the quantification of selected mycotoxins and the simultaneous screening of fungal metabolites in food. Food Additives & Contaminants: Part A. 2011;28(10):14571468. https:/doi.org/10.1080/19440049.2011.59934010.1080/19440049.2011.599340Search in Google Scholar

Martins N, Barros L, Henriques M, Silva S, Ferreira ICFR. Activity of phenolic compounds from plant origin against Candida species. Ind Crops Prod. 2015;74:648–670. https:/doi.org/10.1016/j.indcrop.2015.05.067MartinsNBarrosLHenriquesMSilvaSFerreiraICFRActivity of phenolic compounds from plant origin against Candida species. Ind Crops Prod. 2015;74:648670. https:/doi.org/10.1016/j.indcrop.2015.05.06710.1016/j.indcrop.2015.05.067Search in Google Scholar

Micheluz A, Manente S, Tigini V, Prigione V, Pinzari F, Ravagnan G, Varese GC. The extreme environment of a library: xerophilic fungi inhabiting indoor niches. Int Biodeterior Biodegradation. 2015;99:1–7. https:/doi.org/10.1016/j.ibiod.2014.12.012MicheluzAManenteSTiginiVPrigioneVPinzariFRavagnanGVareseGCThe extreme environment of a library: xerophilic fungi inhabiting indoor niches. Int Biodeterior Biodegradation. 2015;99:17. https:/doi.org/10.1016/j.ibiod.2014.12.01210.1016/j.ibiod.2014.12.012Search in Google Scholar

Micheluz A, Sulyok M, Manente S, Krska R, Varese GC, Ravagnan G. Fungal secondary metabolite analysis applied to Cultural Heritage: the case of a contaminated library in Venice. World Mycotoxin J. 2016;9(3):397–407. https:/doi.org/10.3920/WMJ2015.1958MicheluzASulyokMManenteSKrskaRVareseGCRavagnanGFungal secondary metabolite analysis applied to Cultural Heritage: the case of a contaminated library in Venice. World Mycotoxin J. 2016;9(3):397407. https:/doi.org/10.3920/WMJ2015.195810.3920/WMJ2015.1958Search in Google Scholar

NCCLS. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard – Second Edition. NCCLS document M27-A2. Wayne (USA): National Committee for Clinical Laboratory Standards; 2002.NCCLSReference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard – Second Edition. NCCLS document M27-A2. Wayne (USA): National Committee for Clinical Laboratory Standards; 2002.Search in Google Scholar

Noor Ifatul HMD, Lee HY, Nazamid S, Norhana W, Mahyudin NA. In vitro antibacterial activity of marine-derived fungi isolated from Pulau Redang and Pulau Payar Marine Parks, Malaysia against selected food-borne pathogens. Int Food Res J. 2016;23:2681–2688.Noor IfatulHMDLeeHYNazamidSNorhanaWMahyudinNAIn vitro antibacterial activity of marine-derived fungi isolated from Pulau Redang and Pulau Payar Marine Parks, Malaysia against selected food-borne pathogens. Int Food Res J. 2016;23:26812688.Search in Google Scholar

Nwobodo DC, Ugwu MC, Okoye FBC. Screening of endophytic fungal secondary metabolites from Garcinia kola and Cola nitida for antioxidant properties. J Pharma Res. 2017;1:000136.NwobodoDCUgwuMCOkoyeFBCScreening of endophytic fungal secondary metabolites from Garcinia kola and Cola nitida for antioxidant properties. J Pharma Res. 2017;1:000136.Search in Google Scholar

Piontek M, Łuszczyńska K, Lechów H. Occurrence of the toxin-Producing Aspergillus versicolor Tiraboschi in residential buildings. Int J Environ Res Public Health. 2016;13(9):862. https:/doi.org/10.3390/ijerph13090862PiontekMŁuszczyńskaKLechówHOccurrence of the toxin-Producing Aspergillus versicolor Tiraboschi in residential buildings. Int J Environ Res Public Health. 2016;13(9):862. https:/doi.org/10.3390/ijerph1309086210.3390/ijerph13090862Search in Google Scholar

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10): 1231–1237. https:/doi.org/10.1016/S0891-5849(98)00315-3ReRPellegriniNProteggenteAPannalaAYangMRice-EvansCAntioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10): 12311237. https:/doi.org/10.1016/S0891-5849(98)00315-310.1016/S0891-5849(98)00315-3Search in Google Scholar

Samson RA, Visagie CM, Houbraken J, Hong SB, Hubka V, Klaassen CHW, Perrone G, Seifert KA, Susca A, Tanney JB, et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol. 2014;78:141–173. https:/doi.org/10.1016/j.simyco.2014.07.004SamsonRAVisagieCMHoubrakenJHongSBHubkaVKlaassenCHWPerroneGSeifertKASuscaATanneyJBet al.Phylogeny, identification and nomenclature of the genus Aspergillus.Stud Mycol.2014;78:141173. https:/doi.org/10.1016/j.simyco.2014.07.00410.1016/j.simyco.2014.07.004426080725492982Search in Google Scholar

Sharma SK. Optimized extraction and antioxidant activities of polysaccharides from two entomogenous fungi. J Bioanal Biomed. 2015;07(06):180–187. https:/doi.org/10.4172/1948-593X.1000141SharmaSKOptimized extraction and antioxidant activities of polysaccharides from two entomogenous fungi. J Bioanal Biomed. 2015;07(06):180187. https:/doi.org/10.4172/1948-593X.100014110.4172/1948-593X.1000141Search in Google Scholar

Siddiquee S, Azad SA, Abu Bakar F, Naher L, Vijay Kumar S. Separation and identification of hydrocarbons and other volatile compounds from cultures of Aspergillus niger by GC-MS using two different capillary columns and solvents. J Saudi Chem Soc. 2015;19(3):243–256. https:/doi.org/10.1016/j.jscs.2012.02.007SiddiqueeSAzadSAAbu BakarFNaherLVijay KumarSSeparation and identification of hydrocarbons and other volatile compounds from cultures of Aspergillus niger by GC-MS using two different capillary columns and solvents. J Saudi Chem Soc.2015;19(3):243256. https:/doi.org/10.1016/j.jscs.2012.02.00710.1016/j.jscs.2012.02.007Search in Google Scholar

Siqueira JPZ, Sutton DA, García D, Gené J, Thomson P, Wiederhold N, Guarro J. Species diversity of Aspergillus section Versicolores in clinical samples and antifungal susceptibility. Fungal Biol. 2016;120(11):1458–1467. https:/doi.org/10.1016/j.funbio.2016.02.006SiqueiraJPZSuttonDAGarcíaDGenéJThomsonPWiederholdNGuarroJSpecies diversity of Aspergillus section Versicolores in clinical samples and antifungal susceptibility. Fungal Biol.2016;120(11):14581467. https:/doi.org/10.1016/j.funbio.2016.02.00610.1016/j.funbio.2016.02.00627742099Search in Google Scholar

Slack GJ, Puniani E, Frisvad JC, Samson RA, Miller JD. Secondary metabolites from Eurotium species, Aspergillus calidoustus and A. insuetus common in Canadian homes with a review of their chemistry and biological activities. Mycol Res. 2009;113(4):480–490. https:/doi.org/10.1016/j.mycres.2008.12.002SlackGJPunianiEFrisvadJCSamsonRAMillerJDSecondary metabolites from Eurotium species, Aspergillus calidoustus and A. insuetus common in Canadian homes with a review of their chemistry and biological activities. Mycol Res.2009;113(4):480490. https:/doi.org/10.1016/j.mycres.2008.12.00210.1016/j.mycres.2008.12.00219422073Search in Google Scholar

Smith H, Doyle S, Murphy R. Filamentous fungi as a source of natural antioxidants. Food Chem. 2015;185:389–397. https:/doi.org/10.1016/j.foodchem.2015.03.134SmithHDoyleSMurphyRFilamentous fungi as a source of natural antioxidants. Food Chem. 2015;185:389397. https:/doi.org/10.1016/j.foodchem.2015.03.13410.1016/j.foodchem.2015.03.13425952884Search in Google Scholar

Song F, Liu X, Guo H, Ren B, Chen C, Piggott AM, Yu K, Gao H, Wang Q, Liu M, et al. Brevianamides with antitubercular potential from a marine-derived isolate of Aspergillus versicolor. Org Lett. 2012;14(18):4770–4773. https:/doi.org/10.1021/ol302051xSongFLiuXGuoHRenBChenCPiggottAMYuKGaoHWangQLiuMet alBrevianamides with antitubercular potential from a marine-derived isolate of Aspergillus versicolor.Org Lett.2012;14(18):47704773. https:/doi.org/10.1021/ol302051x10.1021/ol302051x22963079Search in Google Scholar

Sugiharto S, Yudiarti T, Isroli I. Assay of antioxidant potential of two filamentous fungi isolated from the Indonesian fermented dried cassava. Antioxidants. 2016;5(1):6. https:/doi.org/10.3390/antiox5010006SugihartoSYudiartiTIsroliIAssay of antioxidant potential of two filamentous fungi isolated from the Indonesian fermented dried cassava. Antioxidants. 2016;5(1):6. https:/doi.org/10.3390/antiox501000610.3390/antiox5010006480875526848695Search in Google Scholar

Sulyok M, Krska R, Schuhmacher R. A liquid chromatography/tandem mass spectrometric multi-mycotoxin method for the quantification of 87 analytes and its application to semi-quantitative screening of moldy food samples. Anal Bioanal Chem. 2007;389(5): 1505–1523. https:/doi.org/10.1007/s00216-007-1542-2SulyokMKrskaRSchuhmacherRA liquid chromatography/tandem mass spectrometric multi-mycotoxin method for the quantification of 87 analytes and its application to semi-quantitative screening of moldy food samples. Anal Bioanal Chem. 2007;389(5): 15051523. https:/doi.org/10.1007/s00216-007-1542-210.1007/s00216-007-1542-217874237Search in Google Scholar

Turkoglu A, Duru ME, Mercan N, Kivrak I, Gezer K. Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chem. 2007;101(1):267–273. https:/doi.org/10.1016/j.foodchem.2006.01.025TurkogluADuruMEMercanNKivrakIGezerKAntioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chem.2007;101(1):267273. https:/doi.org/10.1016/j.foodchem.2006.01.02510.1016/j.foodchem.2006.01.025Search in Google Scholar

Valle DL Jr, Andrade JI, Puzon JJM, Cabrera EC, Rivera WL. Antibacterial activities of ethanol extracts of Philippine medicinal plants against multidrug-resistant bacteria. Asian Pac J Trop Biomed. 2015;5(7):532–540. https:/doi.org/10.1016/j.apjtb.2015.04.005ValleDLJrAndradeJIPuzonJJMCabreraECRiveraWLAntibacterial activities of ethanol extracts of Philippine medicinal plants against multidrug-resistant bacteria. Asian Pac J Trop Biomed. 2015;5(7):532540. https:/doi.org/10.1016/j.apjtb.2015.04.00510.1016/j.apjtb.2015.04.005Search in Google Scholar

Vishwanath V, Sulyok M, Labuda R, Bicker W, Krska R. Simultaneous determination of 186 fungal and bacterial metabolites in indoor matrices by liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem. 2009;395(5):1355–1372. https:/doi.org/10.1007/s00216-009-2995-2VishwanathVSulyokMLabudaRBickerWKrskaRSimultaneous determination of 186 fungal and bacterial metabolites in indoor matrices by liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem. 2009;395(5):13551372. https:/doi.org/10.1007/s00216-009-2995-210.1007/s00216-009-2995-219669641Search in Google Scholar

Wang CCC, Chiang YM, Kuo PL, Chang JK, Hsu YL. Norsolorinic acid inhibits proliferation of T24 human bladder cancer cells by arresting the cell cycle at the G0/G1 phase and inducing a Fas/membrane-bound Fas ligand-mediated apoptotic pathway. Clin Exp Pharmacol Physiol. 2008;35(11):1301–1308. https:/doi.org/10.1111/j.1440-1681.2008.05007.xWangCCCChiangYMKuoPLChangJKHsuYLNorsolorinic acid inhibits proliferation of T24 human bladder cancer cells by arresting the cell cycle at the G0/G1 phase and inducing a Fas/membrane-bound Fas ligand-mediated apoptotic pathway. Clin Exp Pharmacol Physiol. 2008;35(11):13011308. https:/doi.org/10.1111/j.1440-1681.2008.05007.x10.1111/j.1440-1681.2008.05007.x18671724Search in Google Scholar

Xu X, Zhang X, Nong X, Wang J, Qi S. Brevianamides and mycophenolic acid derivatives from the deep-dea-derived fungus Penicillium brevicompactum DFFSCS025. Mar Drugs. 2017;15(2):43. https:/doi.org/10.3390/md15020043XuXZhangXNongXWangJQiSBrevianamides and mycophenolic acid derivatives from the deep-dea-derived fungus Penicillium brevicompactum DFFSCS025. Mar Drugs. 2017;15(2):43. https:/doi.org/10.3390/md1502004310.3390/md15020043533462328218640Search in Google Scholar

Yu JH, Keller N. Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol. 2005;43(1):437–458. https:/doi.org/10.1146/annurev.phyto.43.040204.140214YuJHKellerN. Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol. 2005;43(1):437458. https:/doi.org/10.1146/annurev.phyto.43.040204.14021410.1146/annurev.phyto.43.040204.14021416078891Search in Google Scholar

Zhao C, Wu Y, Li F, Jin X. Emodin inhibits proliferation and invasion, and induces apoptosis in human esophageal cancer cell line ECA109. Trop J Pharm Res. 2017;16(4):781–785. https:/doi.org/10.4314/tjpr.v16i4.6ZhaoCWuYLiFJinXEmodin inhibits proliferation and invasion, and induces apoptosis in human esophageal cancer cell line ECA109. Trop J Pharm Res. 2017;16(4):781785. https:/doi.org/10.4314/tjpr.v16i4.610.4314/tjpr.v16i4.6Search in Google Scholar

Zhuang Y, Teng X, Wang Y, Liu P, Wang H, Li J, Li G, Zhu W. Cyclopeptides and polyketides from coral-associated fungus, Aspergillus versicolor LCJ-5-4. Tetrahedron. 2011;67(37):7085–7089. https:/doi.org/10.1016/j.tet.2011.07.003ZhuangYTengXWangYLiuPWangHLiJLiGZhuWCyclopeptides and polyketides from coral-associated fungus, Aspergillus versicolor LCJ-5-4. Tetrahedron. 2011;67(37):70857089. https:/doi.org/10.1016/j.tet.2011.07.00310.1016/j.tet.2011.07.003Search in Google Scholar

eISSN:
2544-4646
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Microbiology and Virology