Accès libre

Hydroxyapatite coatings on porous ti and ti alloys

À propos de cet article

Citez

Dumbleton J., Manley M. T.: Hydroxyapatite-Coated Prostheses in Total Hip and Knee Arthroplasty. J. Bone Joint Surg. Am. 86 (2004) 2526-2540.Search in Google Scholar

Sobieszczyk S., Zieliński A.: Coatings in Arthroplasty. Advances in Materials Science, vol. 8, no 4 (2008) 35-54.Search in Google Scholar

Epinette J-A., Manley M. T.: Fifteen Years of Clinical Experience with Hydroxyapatite Coatings in Joint Arthroplasty. Springer-Verlag, France (2004).10.1007/978-2-8178-0851-2Search in Google Scholar

Pichugin V. F., Surmenev R. A., Shesterikov E. V., Ryabtseva M. A., Eshenko E. V., Tverdokhlebov S. I., Prymak O., Epple M.: The preparation of calcium phosphate coatings on titanium and nickel-titanium by rf-magnetron-sputtered deposition: Composition, structure and micromechanical properties. Surface & Coatings Technology 202 (2008) 3913-3920.Search in Google Scholar

Yamaguchi T., Tanaka Y., Ide-Ektessabi A.: Fabrication of hydroxyapatite thin films for biomedical applications using RF magnetron sputtering. Nuclear Instruments and Methods in Physics Research B 249 (2006) 723-725.Search in Google Scholar

Lu Y-P., Song Y-Z., Zhu R-F., Li M-S., Lei T-Q.: Factors influencing phase compositions and structure of plasma sprayed hydroxyapatite coatings during heat treatment. Applied Surface Science 206 (2003) 345-354.Search in Google Scholar

Yan L., Leng Y., Weng L-T.: Characterization of chemical inhomogeneity in plasma-sprayed hydroxyapatite coatings. Biomaterials 24 (2003) 2585-2592.Search in Google Scholar

Man H. C., Chiu K. Y., Cheng F. T., Wong K. H.: Adhesion study on pulsed laser deposited hydroxyapatite coating on laser surface nitride titanium. Thin Solid Films 517 (2009) 5496-5501.Search in Google Scholar

Blalock T., Bai X., Rabiei A.: A study on microstructure and properties of calcium phosphate coatings processed using ion beam assisted deposition on heated substrates. Surface & Coatings Technology 201 (2007) 5850-5858.Search in Google Scholar

Xiao X. F., Liu R. F., Zheng Y. Z.: Characterization of hydroxyapatite/titania composite coatings codeposited by a hydrothermal-electrochemical method on titanium. Surface & Coatings Technology 200 (2006) 4406-4413.Search in Google Scholar

Yousefpour M., Afshar A., Chen J., Zhang X.: Electrophoretic deposition of porous hydroxyapatite coatings using polytetrafluoroethylene particles as templates. Materials Science and Engineering C 27 (2007) 1482-1486.Search in Google Scholar

Ben-Nissan B., Milev A., Vago R.: Morphology of sol-gel derived nano-coated coralline hydroxyapatite. Biomaterials 25 (2004) 4971-4975.Search in Google Scholar

Vaahtio M., Peltola T., Hentunen T., Ylanen H., Areva S., Wolke J., Salonen J. I.: The properties of biomimetically processed calcium phosphate on bioactive ceramics and their response on bone cells. J Mater Sci: Mater Med 17 (2006) 1113-1125.Search in Google Scholar

Jalota S., Bhaduri S., Bhaduri S. B., Tas A. C.: A protocol to develop crack-free biomimetic coatings on Ti6Al4V substrates. J. Mater. Res., 22 (6) (2007) 1593-1600.Search in Google Scholar

Wang Y., Tao J., Wang L., He P, Wang T.: HA coating on titanium with nanotubular anodized TiO2 intermediate layer via electrochemical deposition. Trans. Nonferrous Met. Soc. China 18 (2008) 631-635.Search in Google Scholar

Kar A., Raja K. S., Misra M.: Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surface & Coatings Technology 201 (2006) 3723-3731.Search in Google Scholar

Oh S., Jin S.: Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Materials Science and Engineering C 26 (2006) 1301-1306.Search in Google Scholar

Kim S. E., Lim J. H., Lee S. C., Nam S-C., Kang H-G., Choi J.: Anodically nanostructured titanium dioxides for implant applications. Electrochimica Acta 53 (2008) 4846-4851.Search in Google Scholar

Zhang L., Chen Y., Rodriguez J., Fenniri H., Webster T.: Biomimetic helical rosette nanotubes and nonocrystalline hydroxyapatite coatings on titanium for improving orthopedic implants. Int. Journal of Nanomedicine 3(3) (2008) 323-333.Search in Google Scholar

Li M., Xiao X., Liu R.: Synthesis and bioactivity of highly ordered TiO2 nanotube arrays. Applied Surface Science 255 (2008) 365-367.Search in Google Scholar

Maiyalagan T., Viswanathan B., Varadaraju U. V.: Fabrication and characterization of uniform TiO2 nanotube arrays by sol-gel template method. Bull. Mater. Sci., vol. 29 (7) (2006) 705-708.Search in Google Scholar

Raja K. S., Misra M., Paramguru K.: Deposition of calcium phosphate coating on nanotubular anodized titanium. Materials Letters 59 (2005) 2137-2141.Search in Google Scholar

Yu X., Li Y., Wlodarski W., Kandasamy S., Kalantar-Zadeh K.: Fabrication of nanostructured TiO2 by anodization: A comparision between electrotyles and substrates. Sensors and Actuators B 130 (2008) 25-31.Search in Google Scholar

Lee J-H., Kim S-E., Kim Y-J., Chi Ch-S., Oh H-J.: Effects of microstructure of anodic titania on the formation of bioactive compounds. Materials Chemistry and Physics 98 (2006) 39-43.Search in Google Scholar

Zhang W., Li G., Li Y., Yu Z., Xi Z.: Fabrication of TiO2 nanotube arrays on biologic titanium alloy and properties. Trans. Nonferrous Met. Soc. China 17 (2007) 692-695.Search in Google Scholar

Berger S., Jakubka F., Schmuki P.: Formation of hexagonally ordered nanoporous anodic zirconia. Electrochemistry Communications 10 (2008) 1916-1919.Search in Google Scholar

Macak J. M., Schmuki P.: Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochemica Acta 52 (2006) 1258-1264.Search in Google Scholar

Raja K. S., Gandhi T., Misra M.: Effect of water kontent of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes. Electrochemistry Communications 9 (2007) 1069-1076.Search in Google Scholar

Allam N. K., Grimes C. A.: Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO2 nanotube arrays. Solar Energy Materials & Solar Cells 92 (2008) 1468-1475.Search in Google Scholar

Xiao X., Tian T., Liu R., She H.: Influence of titania nanotube arrays on biomimetic deposition apatite on titanium by alkali treatment. Materials Chemistry and Physics 106 (2007) 27-32.Search in Google Scholar

Zhao J., Wang X., Chen R., Li L.: Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Communications 134 (2005) 705-710.Search in Google Scholar

Oh S-H., Finones R. R., Daraio C., Chen L-H., Jin S.: Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 26 (2005) 4938-4943.Search in Google Scholar

Popat K. C., Leoni L., Grimes C. A., Desai T. A.: Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28 (2007) 3188-3197.Search in Google Scholar

Macak J. M., Schmidt-Stein F., Schmuki P.: Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles. Electrochemistry Communications 9 (2007) 1783-1787.Search in Google Scholar

Bestetti M., Franz S., Cuzzolin M., Arosio P., Cavallotti P. L.: Structure of nanotubular titanium oxide templates prepared by electrochemical anodization in H2SO4/HF solutions. Thin Solid Films 515 (2007) 5253-5258.Search in Google Scholar

Sieber I., Hildebrand H., Friedrich A., Schmuki P.: Formation of self-organized niobium porous oxide on niobium. Electrochemistry Communications 7 (2005) 97-100.Search in Google Scholar

Vega V., Cerdeira M. A., Prida V. M., Alberts D., Bordel N., Pereiro R., Mera F., Garcia S., Hernandez-Velez M., Vazquez M.: Electrolyte influence on the anodic synthesis of TiO2 nanotube arrays. Journal of Non-Crystalline Solids 354 (2008) 5233-5235.Search in Google Scholar

Crawford G. A., Chawla N., Das K., Bose S., Bandyopadhyay A.: Microstructure and deformation behavior of biocompatible TiOTiO2 nanotubes on titanium substrate. Acta Biomaterialia 3 (2007) 359-367.Search in Google Scholar

Crawford G. A., Chawla N.: Tailoring TiO2 nanotube growth during anodic oxidation by crystallographic orientation of Ti. Scripta Materialia 60 (2009) 874-877.Search in Google Scholar

Zhao J., Wang X., Sun T., Li L.: Crystal phase transition and properties of titanium oxide nanotube arrays prepared by anodization. Journal of Alloys and Compounds 434-435 (2007) 792-795.Search in Google Scholar

Bauer S., Kleber S., Schmuki P.: TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes. Electrochemistry Communications 8 (2006) 1321-1325.Search in Google Scholar

Macak J. M., Tsuchiya H., Ghicov A., Yasuda K., Hahn R., Bauer S., Schmuki P.: Current Opinion in Solid State and Materials Science 11 (2007) 3-18.10.1016/j.cossms.2007.08.004Search in Google Scholar

Yang Y., Wang X., Li L.: Synthesis and growth mechanism of graded TiO2 nanotube arrays by two-step anodization. Materials Science and Egnineering B 149 (2008) 58-62.Search in Google Scholar

Ghicov A., Tsuchiya H., Hahn R., Macak J. M., Munoz A. G., Schmuki P.: TiO2 nanotubes: H+ insertion and strong electrochromic effects. Electrochemistry Communications 8 (2006) 528-532.Search in Google Scholar

Munoz A. G.: Semiconducting properties of self-organized TiO2 nanotubes. Electrochimica Acta 52 (2007) 4167-4176.Search in Google Scholar

Hokkanen B., Funk S., Burghaus U., Ghicov A., Schmuki P.: Adsorption kinetics of alkanes on TiO2 nanotubes array - structure - activity relationship. Surface Science 601 (2007) 4620-4628.Search in Google Scholar

Balaur E., Macak J. M., Taveira L., Schmuki P.: Tailoring the wettability of TiO2 nanotube layers. Electrochemistry Communications 7 (2005) 1066-1070.Search in Google Scholar

Tsuchiya H., Macak J. M., Ghicov A., Tang Y. Ch., Fujimoto S., Niinomi M., Noda T., Schmuki P.: Nanotube oxide coating on Ti-29Nb-13Ta-4.6Zr alloy prepared by self-organizing anodization. Electrochimica Acta 52 (2006) 94-101Search in Google Scholar

Yasuda K., Schmuki P.: Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (HN4)2SO4/NH4F electrolytes. Electrochimica Acta 52 (2007) 4053-4061.Search in Google Scholar

Wang N., Li X., Wang Y., Hou Y., Zou X., Chen G.: Synthesis of ZnO/TiO2 nanotube composite film by a two-step route. Materials Letters 62 (2008) 3691-3693.Search in Google Scholar

Ryu W. H., Park C. J., Kwon H. S.: Synthesis of highly ordered TiO2 nanotube in malonic acid solution by anodization. Journal of Nanoscience and Nanotechnology 8 (2008) 1-4.Search in Google Scholar

Tian T., Xiao X., Liu R., She H., Hu X.: Study on titania nanotube arrays prepared by titanium anodization in HN4F/H2SO4 solution. Journal of Materials Science 42 (2007) 5539-3342.Search in Google Scholar

Tian T., Xiao X-F., She H-D., Liu R-F.: Biomimetic growth of apatite on titania nanotube arrays fabricated by titanium anodization in HN4F/H2SO4 electrolyte. Materials Science-Poland, vol. 8, no. 3 (2008) 487-494.Search in Google Scholar

Ghicov A., Tsuchiya H., Macak J. M., Schmuki P.: Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochemistry Communications 7 (2005) 505-509.Search in Google Scholar

Luo B., Yang H., Liu S., Fu W., Sun P., Yuan M., Zhang Y., Liu Z.: Fabrication and characterization of self-organized mixed oxide nanotube arrays by electrochemical anodization of Ti-6Al-4V alloy. Materials Letters 62 (2008) 4512-4515.Search in Google Scholar

Macak J. M., Tsuchiya H., Ghicov A., Schmuki P.: Formation and properties of anodic TiO2 nanotube layers. Electrochemical Communications 7 (2005) 1133-1137.Search in Google Scholar

Kunze J., Muller L., Macak J. M., Greil P., Schmuki P., Muller F. A.: Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. Electrochimica Acta 53 (2008) 6995-7003.Search in Google Scholar

Narayanan R., Seshadri S. K., Kwon T. Y., Kim K. H.: Electrochemical nano-grained calcium phosphate coatings on Ti-6Al-4V for biomaterial applications. Scripta Materialia 56 (2007) 229-232.Search in Google Scholar

Ban S., Maruno S.: Hydrothermal-electrochemical deposition of hydroxyapatite. J. Biomed Mater Res 42 (1998) 387-395.10.1002/(SICI)1097-4636(19981205)42:3<387::AID-JBM6>3.0.CO;2-FSearch in Google Scholar

Feng B., Chu X., Chen J., Wang J., Lu X., Weng J.: Hydroxyapatite coating on titanium surface with titania nanotube layer and its bond strength to substrate. J Porous Mater, Springer (2009) Article in progress.10.1007/s10934-009-9307-2Search in Google Scholar

Kokubo T., Takadama H.: How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 27 (2006) 2907-2915.Search in Google Scholar

Kodama A., Bauer S., Komatsu A., Asoh H., Ono S., Schmuki P.: Bioactivation of titanium surfa ces Rusing coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomaterialia (2009), Article in progress.10.1016/j.actbio.2009.02.032Search in Google Scholar

Bohner M., Lemaitre J.: Can bioactivity be tested in vitro with SBF solution? Biomaterials 30 (2009) 2175-2179.Search in Google Scholar

Kong L., Gao Y., Lu G., Gong Y., Zhao N., Zhang X.: A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. European Polymer Journal 42 (2006) 3171-3179.Search in Google Scholar

ISO Standard: ISO 13779-4: 2002. Implants for surgery-hydroxyapatite-part 4: determination of coating adhesion strength. http://www.iso.org/iso/catalogue_detail.htm?csnumber=30723Search in Google Scholar

eISSN:
2083-4799
ISSN:
1730-2439
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Materials Sciences, Functional and Smart Materials