Accès libre

Surface active agent production from olive oil in high salt conditions and its process optimization

À propos de cet article

Citez

1. Onbasli, D. & Aslim, B. (2009). Biosurfactant production in sugar beet molasses by some Pseudomonas spp, J. Environ. Biol., 30, 161-163.Search in Google Scholar

2. Pacheco, G.J., Ciapina, E.M.P., Gomes, E.B. and Junior, N.P. (2010). Biosurfactant production by Rhodococcuserthropolis and its application to oil removal, Brazilian J. Microbiol., 41, 685-693.Search in Google Scholar

3. Kumar, C.G., Joo, S.H., Choi, J.W., Koo, Y.M. & Chang, C.S., (2004). Purification and characterization of an extracellular polysaccharide from haloakalophilic Bacillus sp. I-450. Enz. Microbial. Technol., 34, 673-681. doi:10.1016/j.enzmictec.2004.03.001.10.1016/j.enzmictec.2004.03.001Search in Google Scholar

4. Van Dyke, M.I., Lee, H. & Trevors, J.T., (1991). Applications of Microbial Surfactants. Biotech. Adv., 9, 241&252.Search in Google Scholar

5. Parthasarathi, R. & Sivakumaar, P.K. (2009). Effect of Different Carbon Sources on the Production of Biosurfactant by Pseudomonas fluorescens Isolated from Mangrove Forests (Pichavaram), Tamil Nadu, India. Glob. J. Env. Res. 3, 99-101.Search in Google Scholar

6. Pruthi, V. & Cameotra, S.S., (2003). Effect of Nutrients on Optimal Production of Biosurfactants by Pseudomonas putida-A Gujarat Oil Field Isolate. J. Surfact. Deterg., 6, 65-68.10.1007/s11743-003-0250-9Search in Google Scholar

7. Zajic, J.E., Gignard, H. & Gerson, D.F. (1997). Properties and Biodegradation of a Bioemulsifier from Corynebacterium hydrocarboclatus. Biotechnol. Bioeng., 19, 1303-1312.10.1002/bit.26019090519111Search in Google Scholar

8. Kretschmer, A., Bock, H. & Wagner, F. (1982). Chemical and Physical Characterization of Interfacial- -Active Lipids from Rhodococcus erythropolis Grown on n-Alkane. Appl. Environ. Microbiol. 44, 864-870.10.1128/aem.44.4.864-870.198224211016346110Search in Google Scholar

9. Georgiou, G., Lin, S.C. & Sharma, M.M. (1990). Surface Active Compounds from Microorganisms. Bio- Technol., 10, 60-65.Search in Google Scholar

10. Desai, J.D. & Banat, I.M., (1997). Microbial Production of Biosurfactants and Their Commercial Potential, Microbiol. Mol. Biol. Rev. 61, 47-64.Search in Google Scholar

11. Kebbouche-Gana, S., Gana, ML, Khemili, S., Fazouane-Naimi, F., Bouanane, N.A., Penninckx, M. & Hacene, H., (2009). Isolation and characterization of halophilic Archaea able to produce biosurfactants, J. Ind. Microbiol. Biotechnol., 36, 727-738. DOI: 10.1007/ s10295-009-0545-8.10.1007/s10295-009-0545-819266223Search in Google Scholar

12. Post, F.J. & Collins, N.F. (1982). A preliminary investigation of the membrane lipid of Halobacteriumhalobium as a food additive, J. Food. Biochem., 6, 25-38. DOI: 10.1111/j.1745-4514.1982.tb00294.x.10.1111/j.1745-4514.1982.tb00294.xSearch in Google Scholar

13. Yakimov, M.M., Timmis, K.N., Wray, V., & Fredrickson, H.L., (1995). Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS 50, Appl. Environ. Microbiol., 61,1706-1713.10.1128/aem.61.5.1706-1713.19951674327646007Search in Google Scholar

14. Kiran, G.S., Hema, T.A., Gandhimathi, R., Selvin, J., Thomas, T.A., Ravji, T.R. & Natarajaseenivasan, K. (2009). Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillusustus MSF3, Col. Surf. B Biointer., 73, 250-256. doi:10.1016/j.colsurfb.2009.05.025.10.1016/j.colsurfb.2009.05.02519570659Search in Google Scholar

15. Shyu, H.L. & Hsieh, L.L. (2007). Application of the Taguchi experimental design to the optimization of UV/TiO2 and UV/H2O2 process for copper complexes treatment, Environ. Inform. Arch., 5, 674-683.Search in Google Scholar

16. Taguchi, G. (1991). System of experimental design. Quality Resources, Kraus and Americans Supplier Institute (eds), USA.Search in Google Scholar

17. Venil, C.K. & Lakshmanaperumalsamy, P, (2008) Response Surface Methodology for the Optimization of Alpha Amylase Production by Serratia marcescens SB08, P. J. Sci. Technol. 51, 333-339.Search in Google Scholar

18. Abouseoud, M., Maachi, R. & Amrane, A. (2007). Biosurfactant Production from olive oil by Pseudomonas fluorescens. Comm. Cur. Res. Edu. Top. Trends Appl. Microbiol. 340-347.Search in Google Scholar

19. Franzetti, A., Caredda, P., Colla, P.L., Pintus, M., Tamburini, E., Papacchini, M. & Bestetti, G. (2009). Cultural factors affecting biosurfactant production by Gordonia sp. BS29, Int. Biodeter. Biodeg., 63, 943-947.10.1016/j.ibiod.2009.06.001Search in Google Scholar

20. Van Hamme, J.D., Singh, A. & Ward, O.P. (2006). Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology, Biotechnol., Adv., 24, 604-620. doi:10.1016/j. biotechadv.2006.08.001.Search in Google Scholar

21. Haba, E., Espuny, M.J., Busqueis, M., & Manresa, A. (2000). Isolation of lipasescreening bacteria by developing used frying oil as selective substrate, J. Appl. Microbiol., 88, 379-387.10.1046/j.1365-2672.2000.00961.x10747218Search in Google Scholar

22. Moussa, TAA, Ahmed, G.M. & Abdel-hamid, S.M.S., (2006) Optimization of Cultural Conditions for Biosurfactant Production from Nocardia amarae, J. Appl. Sci. Res., 2, 844-850.Search in Google Scholar

23. Zhu, Y., Ni, J. & Huang, W., (2010), Process optimization for the production of diosgenin with Trichodermareesei, Bioproc. Biosyst. Eng., 33, 647-655.DOI: 10.1007/ s00449-009-0390-1.Search in Google Scholar

24. Wang, Y.X., Liu, H., Bao, J.G., Hong, Y., Yang, Z.H. & Zhang, C.X. (2008). The saccharification-membrane retrieval-hydrolysis (SMRH) process: a novel approach for cleaner production of diosgenin derived from Dioscorea zingiberensis, J. Cleaner Prod., 16, 1133-1137. doi:10.1016/j.jclepro.2007.05.008.10.1016/j.jclepro.2007.05.008Search in Google Scholar

25. Sheng, J., Chi, Z.M., Yan, K.R., Wang, X.H., Gong, F., & Li, J., (2009). Use of response surface methodology for optimizing process parameters for high inulinase production by the marine yeast Cryptococcusaureus G7a in solid-state fermentation and hydrolysis of inulin. Bioproc. Biosyst. Eng., 32, 333-339. DOI: 10.1007/ s00449-008-0252-2.10.1007/s00449-008-0252-218726619Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering