1. bookVolume 61 (2011): Edition 1 (March 2011)
Détails du magazine
Première parution
28 Feb 2007
4 fois par an
Accès libre

Metal ions, Alzheimer's disease and chelation therapy

Publié en ligne: 15 Mar 2011
Volume & Edition: Volume 61 (2011) - Edition 1 (March 2011)
Pages: 1 - 14
Détails du magazine
Première parution
28 Feb 2007
4 fois par an

D. M. Skovronsky, V. M.-Y. Lee and J. Q. Trojanowski, Neurodegenerative diseases: New concepts of pathogenesis and their therapeutic implications, Annu. Rev. Pathol. Mech. Dis. 1 (2006) 151-170; DOI: 10.1146/annurev.pathol.1.110304.100113.10.1146/annurev.pathol.1.110304.100113Search in Google Scholar

R. Mayeux, Epidemiology of neurodegeneration, Annu. Rev. Neurosci. 26 (2003) 81-104; DOI: 10.1146/annurev.neuro.26.043002.094919.10.1146/annurev.neuro.26.043002.094919Search in Google Scholar

C. P. Ferri, R. Sousa, E. Albanese, W. S. Ribeiro and M. Honyashiki, World Alzheimer Report 2009 - Executive Summary (Eds. M. Prince and J. Jadeson), Alzheimer's Disease International, London 2009, pp. 1-22; http://www.alz.co.uk/adi/publications.htmlSearch in Google Scholar

F. M. LaFerla and S. Oddo, Alzheimer's disease: Aβ, tau and synaptic dysfunction, Trends Mol. Med. 11 (2005) 170-176; DOI: 10.1016/j.molmed.2005. in Google Scholar

M. Tolnay and A. Probst, Tau protein pathology in Alzheimer's disease and related disorders, Neuropathol. Appl. Neurobiol. 25 (1999) 171-187; DOI: 10.1046/j.1365-2990.1999.00182.x.10.1046/j.1365-2990.1999.00182.xSearch in Google Scholar

C. Ballatore, V. M.-Y. Lee and J. Q. Trojanowski, Tau-mediated neurodegeneration in Alzheimer's disease and related disorders, Nature Rev. Neurosci. 8 (2007) 663-672; DOI: 10.1038/nrn2194.10.1038/nrn2194Search in Google Scholar

C. W. Scott, A. Fieles, L. A. Sygowski and C. B. Caputo, Aggregation of tau protein by aluminum, Brain Res. 628 (1993) 77-84; DOI: 10.1016/0006-8993(93)90940-O.10.1016/0006-8993(93)90940-OSearch in Google Scholar

A. Yamamoto, R.-W. Shin, K. Hasegawa, H. Naiki, H. Sato, F. Yoshimasu and T. Kitamoto, Iron (III) induces aggregation of hyperphosphorylated tau, and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer's disease, J. Neurochem. 86 (2003) 1137-1147; DOI: 10.1046/j.1471-4159.2002.01061.x.10.1046/j.1471-4159.2002.01061.xSearch in Google Scholar

R.-W. Shin, T. P. A. Kruck, H. Murayama and T. Kitamoto, A novel trivalent cation chelator Feralex dissociates binding of aluminum and iron associated with hyperphosphorylated tau of Alzheimer's disease, Brain Res. 961 (2003) 139-146; DOI: 10.1016/S0006-8993(02)03893-3.10.1016/S0006-8993(02)03893-3Search in Google Scholar

T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Döbeli, D. Schubert and R. Riek, 3D structure of Alzheimer's amyloid-β (1-42) fibrils, Proc. Natl Acad. Sci. USA 102 (2005) 17342-17347; DOI: 10.1073/pnas.0506723102.10.1073/pnas.0506723102129766916293696Search in Google Scholar

W. P. Esler and M. S. Wolfe, A portrait of Alzheimer secretases - new features and familiar faces, Science 293 (2001) 1449-1454; DOI: 10.1126/science.1064638.10.1126/science.106463811520976Search in Google Scholar

M. P. Mattson, Pathways towards and away from Alzheimer's disease, Nature 430 (2004) 631-639; DOI: 10.1038/nature02621.10.1038/nature02621309139215295589Search in Google Scholar

M. Shoji, T. Golde, J. Ghiso, T. Cheung, S. Estus, L. Shaffer, X. Cai, D. McKay, R. Tintner and B. Frangione, Production of the Alzheimer amyloid beta protein by normal proteolytic processing, Science 258 (1992) 126-129; DOI: 10.1126/science.1439760.10.1126/science.14397601439760Search in Google Scholar

C. L. Masters, G. Simms, N. A. Weinman, G. Multhaup, B. L. McDonald and K. Beyreuther, Amyloid plaque core protein in Alzheimer disease and Down syndrome, Proc. Natl Acad. Sci. USA 82 (1985) 4245-4249; DOI: 10.1073/pnas.82.12.4245.10.1073/pnas.82.12.42453979733159021Search in Google Scholar

B. Clippingdale, J. D. Wade and C. J. Barrow, The amyloid-β peptide and its role in Alzheimer's disease, J. Peptide Sci. 7 (2001) 227-249; DOI: 10.1002/psc.324.abs.10.1002/psc.32411428545Search in Google Scholar

C. Vigo-Pelfrey, D. Lee, P. Keim, I. Lieberburg and D. B. Schenk, Amyloid peptide from human cerebrospinal fluid, J. Neurochem. 61 (1993) 1965-1968; DOI: 10.1111/j.1471-4159.1993.tb09841.x.10.1111/j.1471-4159.1993.tb09841.x8229004Search in Google Scholar

P. Seubert, C. Vigo-Pelfrey, F. Esch, M. Lee, H. Dovey, D. Davis, S. Sinha, M. Schiossmacher, J. Whaley, C. Swindlehurst, R. McCormack, R. Wolfert, D. Selkoe, I. Lieberburg and D. Schenk, Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids, Nature 359 (1992) 325-327; DOI: 10.1038/359325a0.10.1038/359325a01406936Search in Google Scholar

J. T. Jarret, E. P. Berger and P. T. Lansbury, The C-terminus of the β protein is critical in amyloidogenesis, Ann. NY Acad. Sci. USA 695 (1993) 144-148; DOI: 10.1111/j.1749-6632.1993.tb23043.x.10.1111/j.1749-6632.1993.tb23043.x8239273Search in Google Scholar

A. Lorenzo and B. A. Yankner, Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red, Proc. Natl. Acad. Sci. USA 91 (1994) 12243-12247; DOI: 10.1073/pnas.91.25.12243.10.1073/pnas.91.25.12243454137991613Search in Google Scholar

J. Hardy and D. J. Selkoe, The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics, Science 297 (2002) 353-356; DOI: 10.1126/science.1072994.10.1126/science.107299412130773Search in Google Scholar

H. Kozlowski, A. Janicka-Klos, J. Brasun, E. Gaggelli, D. Valensin and G. Valensin, Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation), Coord. Chem. Rev. 253 (2009) 2665-2685; DOI: 10.1016/j.ccr.2009. in Google Scholar

Y. Hung, A. Bush and R. Cherny, Copper in the brain and Alzheimer's disease, J. Biol. Inorg. Chem. 15 (2010) 61-76; DOI: 10.1007/s00775-009-0600-y.10.1007/s00775-009-0600-ySearch in Google Scholar

P. J. Crouch, K. J. Barnham, A. I. Bush and A. R. White, Therapeutic Treatments for Alzheimer's disease based on metal bioavailability, Drug News Perspect. 19 (2006) 469-474; DOI: 10.1358/dnp.2006.19.8.1021492.10.1358/dnp.2006.19.8.1021492Search in Google Scholar

M. A. Lovell, J. D. Robertson, W. J. Teesdale, J. L. Campbell and W. R. Markesbery, Copper, iron and zinc in Alzheimer's disease senile plaques, J. Neurol. Sci. 158 (1998) 47-52; DOI: 10.1016/S0022-510X(98)00092-6.10.1016/S0022-510X(98)00092-6Search in Google Scholar

C. S. Atwood, R. D. Moir, X. Huang, R. C. Scarpa, N. M. E. Bacarra, D. M. Romano, M. A. Hartshorn, R. E. Tanzi and A. I. Bush, Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis, J. Biol. Chem. 273 (1998) 12817-12826; DOI: 10.1074/jbc.273.21.12817.10.1074/jbc.273.21.12817Search in Google Scholar

B. Raman, T. Ban, K.-I. Yamaguchi, M. Sakai, T. Kawai, H. Naiki and Y. Goto, Metal ion-dependent effects of clioquinol on the fibril growth of an amyloid β peptide, J. Biol. Chem. 280 (2005) 16157-16162; DOI: 10.1074/jbc.M500309200.10.1074/jbc.M500309200Search in Google Scholar

P. Faller, Copper and zinc binding to amyloid-β: Coordination, dynamics, aggregation, reactivity and metal-ion transfer, ChemBioChem 10 (2009) 2837-2845; DOI: 10.1002/cbic.200900321.10.1002/cbic.200900321Search in Google Scholar

C. Hureau and P. Faller, A[beta]-mediated ROS production by Cu ions: Structural insights, mechanisms and relevance to Alzheimer's disease, Biochimie 91 (2009) 1212-1217; DOI: 10.1016/j.biochi.2009. in Google Scholar

M. A. Deibel, W. D. Ehmann and W. R. Markesbery, Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer's disease: possible relation to oxidative stress, J. Neurol. Sci. 143 (1996) 137-142; DOI: 10.1016/S0022-510X(96)00203-1.10.1016/S0022-510X(96)00203-1Search in Google Scholar

M. C. Boll, M. Alcaraz-Zubeldia, S. Montes and C. Rios, Free copper, ferroxidase and SOD1 activities, lipid peroxidation and NO(x) content in the CSF. A different marker profile in four neurodegenerative diseases, Neurochem. Res. 33 (2008) 1717-1723; DOI: 10.1007/s11064-008-9610-3.10.1007/s11064-008-9610-318307039Search in Google Scholar

I. Maurer, S. Zierz and H. J. Moller, A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients, Neurobiol. Aging 21 (2000) 455-462; DOI: 10.1016/S0197-4580(00) 00112-3.Search in Google Scholar

Q. Ma, Y. Li, J. Du, H. Liu, K. Kanazawa, T. Nemoto, H. Nakanishi and Y. Zhao, Copper binding properties of a tau peptide associated with Alzheimer's disease studied by CD, NMR, and MALDI-TOF MS, Peptides 27 (2006) 841-849; DOI: 10.1016/j.peptides.2005. in Google Scholar

N. T. Watt, I. J. Whitehouse and N. M. Hooper, The role of zinc in Alzheimer's disease, Int. J. Alzheimer's Dis. 2011 (2011) in press; DOI: 10.4061/2011/971021.10.4061/2011/971021Search in Google Scholar

A. Bush, W. Pettingell, G. Multhaup, M. D. Paradis, J. Vonsattel, J. Gusella, K. Beyreuther, C. Masters and R. Tanzi, Rapid induction of Alzheimer A beta amyloid formation by zinc, Science 265 (1994) 1464-1467; DOI: 10.1126/science.8073293.10.1126/science.8073293Search in Google Scholar

K. H. Lim, Y. K. Kim and Y.-T. Chang, Investigations of the molecular mechanism of metal-induced Aβ (1-40) amyloidogenesis, Biochemistry 46 (2007) 13523-13532; DOI: 10.1021/bi701112z.10.1021/bi701112zSearch in Google Scholar

C. Talmard, L. Guilloreau, Y. Coppel, H. Mazarguil, and P. Faller, Amyloid-beta peptide forms monomeric complexes with CuII and ZnII prior to aggregation, ChemBioChem 8 (2007) 163-165; DOI: 10.1002/cbic.200600319.10.1002/cbic.200600319Search in Google Scholar

M. P. Cuajungco and K. Y. Faget, Zinc takes the center stage: its paradoxical role in Alzheimer's disease, Brain Res. Rev. 41 (2003) 44-56; DOI: 10.1016/S0165-0173(02)00219-9.10.1016/S0165-0173(02)00219-9Search in Google Scholar

Z.-Y. Mo, Y.-Z. Zhu, H.-L. Zhu, J.-B. Fan, J. Chen and Y. Liang, Low micromolar zinc accelerates the fibrillization of human tau via bridging of Cys-291 and Cys-322, J. Biolog. Chem. 284 (2009) 34648-34657; DOI: 10.1074/jbc.M109.058883.10.1074/jbc.M109.058883278732719826005Search in Google Scholar

P. W. Mantyh, J. R. Ghilardi, S. Rogers, E. DeMaster, C. J. Allen, E. R. Stimson and J. E. Maggio, Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of β-amyloid peptide, J. Neurochem. 61 (1993) 1171-1174; DOI: 10.1111/j.1471-4159.1993.tb03639.x.10.1111/j.1471-4159.1993.tb03639.x8360682Search in Google Scholar

C. Opazo, X. Huang, R. A. Cherny, R. D. Moir, A. E. Roher, A. R. White, R. Cappai, C. L. Masters, R. E. Tanzi, N. C. Inestrosa and A. I. Bush, Metalloenzyme-like activity of Alzheimer's disease β-amyloid, J. Biol. Chem. 277 (2002) 40302-40308; DOI: 10.1074/jbc.M206428200.10.1074/jbc.M20642820012192006Search in Google Scholar

D. G. Smith, R. Cappai and K. J. Barnham, The redox chemistry of the Alzheimer's disease amyloid beta peptide, Biochim. Biophysi. Acta - Biomembranes 1768 (2007) 1976-1990; DOI: 10.2217/14796708.2.4.397.10.2217/14796708.2.4.397Search in Google Scholar

P. F. Good, D. P. Perl, L. M. Bierer and J. Schmeidler, Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer's disease: A laser microprobe (LAMMA) study, Ann. Neurol. 31 (1992) 286-292; DOI: 10.1002/ana.410310310.10.1002/ana.4103103101637136Search in Google Scholar

I. Klatzo, H. Wisniewski and E. Streicher, Experimental production of neurofibrillary degeneration: 1. Light microscopic observations, J. Neuropathol. Exp. Neurol. 24 (1965) 187-199; DOI: 10.1097/00005072-196504000-00002.10.1097/00005072-196504000-0000214280496Search in Google Scholar

R. D. Terry and C. Pena, Experimental production of neurofibrillary degeneration: 2. Electron microscopy, phosphatase histochemistry and electron prose analysis, J. Neuropathol. Exp. Neurol. 24 (1965) 200-210; DOI: 10.1097/00005072-196504000-00003.10.1097/00005072-196504000-0000314280497Search in Google Scholar

D. Drago, M. Bettella, S. Bolognin, L. Cendron, J. Scancar, R. Milacic, F. Ricchelli, A. Casini, L. Messori, G. Tognon and P. Zatta, Potential pathogenic role of β-amyloid1-42-aluminum complex in Alzheimer's disease, Int. J. Biochem. Cell Biol. 40 (2008) 731-746; DOI: 10.1016/j.biocel.2007. in Google Scholar

A. Rauk, The chemistry of Alzheimer's disease, Chem. Soc. Rev. 38 (2009) 2698-2715; DOI: 10.1039/b807980n.10.1039/b807980n19690748Search in Google Scholar

L. E. Scott and C. Orvig, Medicinal inorganic chemistry approaches to passivation and removal of aberrant metal ions in disease, Chem. Rev. 109 (2009) 4885-4910; DOI: 10.1021/cr9000176.10.1021/cr900017619637926Search in Google Scholar

J. A. Duce and A. I. Bush, Biological metals and Alzheimer's disease: Implications for therapeutics and diagnostics, Prog. Neurobiol. 92 (2010) 1-18; DOI: 10.1016/j.pneurobio.2010. in Google Scholar

I. Bush and R. E. Tanzi, Therapeutics for Alzheimer's disease based on the metal hypothesis, Neurotherapeutics 5 (2008) 421-432; DOI: 10.1016/j.nurt.2008. in Google Scholar

A. Gaeta and R. C. Hider, The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy, Br. J. Pharmacol. 146 (2005) 1041-1059; DOI: 10.1038/sj.bjp.0706416.10.1038/sj.bjp.0706416175124016205720Search in Google Scholar

P. Zatta, D. Drago, S. Bolognin and S. L. Sensi, Alzheimer's disease, metal ions and metal homeostatic therapy, Trends Pharmacol. Sci. 30 (2009) 346-355; DOI: 10.1016/j.tips.2009. in Google Scholar

L. R. Perez and K. J. Franz, Minding metals: Tailoring multifunctional chelating agents for neurodegenerative disease, Dalton Trans. 39 (2010) 2177-2187; DOI: 10.1039/b919237a.10.1039/B919237A286039720162187Search in Google Scholar

D. R. C. McLachlan, T. P. A. Kruck, W. Kalow, D. F. Andrews, A. J. Dalton, M. Y. Bell and W. L. Smith, Intramuscular desferrioxamine in patients with Alzheimer's disease, Lancet 337 (1991) 1304-1308; DOI: 10.1016/0140-6736(91)92978-B.10.1016/0140-6736(91)92978-BSearch in Google Scholar

R. A. Cherny, J. T. Legg, C. A. McLean, D. P. Fairlie, X. Huang, C. S. Atwood, K. Beyreuther, R. E. Tanzi, C. L. Masters and A. I. Bush, Aqueous dissolution of Alzheimer's disease abeta amyloid deposits by biometal depletion, J. Biol. Chem. 274 (1999) 23223-23228; DOI: 10.1074/jbc.274.33.23223.10.1074/jbc.274.33.23223Search in Google Scholar

R. A. Cherny, K. J. Barnham, T. Lynch, I. Volitakis, Q.-X. Li, C. A. McLean, G. Multhaup, K. Beyreuther, R. E. Tanzi, C. L. Masters and A. I. Bush, Chelation and intercalation: Complementary properties in a compound for the treatment of Alzheimer's disease, J. Struct. Biol. 130 (2000) 209-216; DOI: 10.1006/jsbi.2000.4285.10.1006/jsbi.2000.4285Search in Google Scholar

C. Boldron, I. Van der Auwera, C. Deraeve, H. Gornitzka, S. Wera, M. Pitié, F. Van Leuven and B. Meunier, Preparation of cyclo-phen-type ligands: Chelators of metal ions as potential therapeutic agents in the treatment of neurodegenerative diseases, ChemBioChem 6 (2005) 1976-1980; DOI: 10.1002/cbic.200500220.10.1002/cbic.200500220Search in Google Scholar

A. Dedeoglu, K. Cormier, S. Payton, K. A. Tseitlin, J. N. Kremsky, L. Lai, X. Li, R. D. Moir, R. E. Tanzi, A. I. Bush, N. W. Kowall, J. T. Rogers and X. Huang, Preliminary studies of a novel bifunctional metal chelator targeting Alzheimer's amyloidogenesis, Exp. Gerontol. 39 (2004) 1641-1649; DOI: 10.1016/j.exger.2004. in Google Scholar

Z. Cui, P. R. Lockman, C. S. Atwood, C.-H. Hsu, A. Gupte, D. D. Allen and R. J. Mumper, Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer's and other CNS diseases, Eur. J. Pharm. Biopharm. 59 (2005) 263-272; DOI: 10.1016/j.ejpb.2004. in Google Scholar

J.-Y. Lee, J. E. Friedman, I. Angel, A. Kozak and J.-Y. Koh, The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human [beta]-amyloid precursor protein transgenic mice, Neurobiol. Aging 25 (2004) 1315-1321; DOI: 10.1016/j.neurobiolaging.2004. in Google Scholar

V. Moret, Y. Laras, N. Pietrancosta, C. Garino, G. Quelever, A. Rolland, B. Mallet, J. C. Norreel and J. L. Kraus, 1,1 '-Xylyl bis-1,4,8,11-tetraaza cyclotetradecane: A new potential copper chelator agent for neuroprotection in Alzheimer's disease. Its comparative effects with clioquinol on rat brain copper distribution, Bioorg. Med. Chem. Lett. 16 (2006) 3298-3301; DOI: 10.1016/j.bmcl.2006. in Google Scholar

H. Zheng, S. Gal, L. M. Weiner, O. Bar-Am, A. Warshawsky, M. Fridkin and M. B. H. Youdim, Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition, J. Neurochem. 95 (2005) 68-78; DOI: 10.1111/j.1471-4159.2005.03340.x.10.1111/j.1471-4159.2005.03340.xSearch in Google Scholar

D. Kaur, F. Yantiri, S. Rajagopalan, J. Kumar, J. Q. Mo, R. Boonplueang, V. Viswanath, R. Jacobs, L. Yang, M. F. Beal, D. DiMonte, I. Volitaskis, L. Ellerby, R. A. Cherny, A. I. Bush and J. K. Andersen, Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: A novel therapy for Parkinson's disease, Neuron 37 (2003) 899-909; DOI: 10.1016/S0896-6273 (03)00126-0.Search in Google Scholar

R. A. Cherny, C. S. Atwood, M. E. Xilinas, D. N. Gray, W. D. Jones, C. A. McLean, K. J. Barnham, I. Volitakis, F. W. Fraser, Y.-S. Kim, X. Huang, L. E. Goldstein, R. D. Moir, J. T. Lim, K. Beyreuther, H. Zheng, R. E. Tanzi, C. L. Masters and A. I. Bush, Treatment with a copper-zinc chelator markedly and rapidly inhibits [beta]-amyloid accumulation in Alzheimer's disease transgenic mice, Neuron 30 (2001) 665-676; DOI: 10.1016/S0896-6273(01)00317-8.10.1016/S0896-6273(01)00317-8Search in Google Scholar

H. Zheng, M. B. H. Youdim, L. M. Weiner and M. Fridkin, Synthesis and evaluation of peptidic metal chelators for neuroprotection in neurodegenerative diseases, J. Pept. Res. 66 (2005) 190-203; DOI: 10.1111/j.1399-3011.2005.00289.x.10.1111/j.1399-3011.2005.00289.xSearch in Google Scholar

C. Deraeve, M. Pitie, H. Mazarguil and B. Meunier, Bis-8-hydroxyquinoline ligands as potential anti-Alzheimer agents, New J. Chem. 31 (2007) 193-195; DOI: 10.1039/b616085a.10.1039/b616085aSearch in Google Scholar

C. W. Ritchie, A. I. Bush, A. Mackinnon, S. Macfarlane, M. Mastwyk, L. MacGregor, L. Kiers, R. Cherny, Q.-X. Li, A. Tammer, D. Carrington, C. Mavros, I. Volitakis, M. Xilinas, D. Ames, S. Davis, K. Beyreuther, R. E. Tanzi and C. L. Masters, Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: A pilot phase 2 clinical trial, Arch. Neurol. 60 (2003) 1685-1691; DOI: 10.1001/archneur.60.12.1685.10.1001/archneur.60.12.1685Search in Google Scholar

A. I. Bush, Metal complexing agents as therapies for Alzheimer's disease, Neurobiol. Aging 23 (2002) 1031-1038. DOI: 10.1016/S0197-4580(02)00120-3.10.1016/S0197-4580(02)00120-3Search in Google Scholar

J. Tateishi, Subacute myelo-optico-neuropathy: Clioquinol intoxication in humans and animals, Neuropathology 20 (Suppl.) S20-S24; DOI: 10.1046/j.1440-1789.2000.00296.x.10.1046/j.1440-1789.2000.00296.xSearch in Google Scholar

M. S. Yassin, J. Ekblom, M. Xilinas, C. G. Gottfries and L. Oreland, Changes in uptake of vitamin B-12 and trace metals in brains of mice treated with clioquinol, J. Neurol. Sci 173 (2000) 40-44; DOI: 10.1016/S0022-510X(99)00297-X.10.1016/S0022-510X(99)00297-XSearch in Google Scholar

M. Di Vaira, C. Bazzicalupi, P. Orioli, L. Messori, B. Bruni and P. Zatta, Clioquinol, a drug for Alzheimer's disease specifically interfering with brain metal metabolism: Structural characterization of its zinc(II) and copper(II) complexes, Inorg. Chem. 43 (2004) 3795-3797; DOI: 10.1021/ic0494051.10.1021/ic049405115206857Search in Google Scholar

C. C. Wagner, S. Calvo, M. H. Torre and E. J. Baran, Vibrational spectra of clioquinol and its Cu(II) complex, J. Raman Spectrosc. 38 (2007) 373-376; DOI: 10.1002/jrs.1654.10.1002/jrs.1654Search in Google Scholar

A. Budimir, N. Humbert, M. Elhabiri, I. Osinska, M. Birus and A.-M. Albrecht-Gary, Hydroxyquinoline based binders: Promising ligands for chelatotherapy?, J. Inorg. Biochem, in press; DOI: 10.1016/j.jinorgbio.2010. in Google Scholar

R. A. Cherny, J. T. Legg, C. A. McLean, D. P. Fairlie, X. Huang, C. S. Atwood, K. Beyreuther, R. E. Tanzi, C. L. Masters and A. I. Bush, Aqueous dissolution of Alzheimer's disease Aβ amyloid deposits by biometal depletion, J. Biol. Chem. 274 (1999) 23223-23228; DOI: 10.1074/jbc.274.33.23223.10.1074/jbc.274.33.2322310438495Search in Google Scholar

C. Grossi, S. Francese, A. Casini, M. C. Rosi, I. Luccarini, A. Fiorentini, C. Gabbiani, L. Messori, G. Moneti and F. Casamenti, Clioquinol decreases amyloid-β burden and reduces working memory impairment in a transgenic mouse model of Alzheimer's disease, J. Alzheimer's Dis. 17 (2009) 423-440.10.3233/JAD-2009-1063Search in Google Scholar

L. Lannfelt, K. Blennow, H. Zetterberg, S. Batsman, D. Ames, J. Harrison, C. L. Masters, S. Targum, A. I. Bush, R. Murdoch, J. Wilson and C. W. Ritchie, Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial, Lancet Neurol. 7 (2008) 779-786; DOI: 10.1016/S1474-4422(08)70167-4.10.1016/S1474-4422(08)70167-4Search in Google Scholar

P. A. Adlard, R. A. Cherny, D. I. Finkelstein, E. Gautier, E. Robb, M. Cortes, I. Volitakis, X. Liu, J. P. Smith, K. Perez, K. Laughton, Q.-X. Li, S. A. Charman, J. A. Nicolazzo, S. Wilkins, K. Deleva, T. Lynch, G. Kok, C. W. Ritchie, R. E. Tanzi, R. Cappai, C. L. Masters, K. J. Barnham and A. I. Bush, Rapid restoration of cognition in Alzheimer's transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Aβ, Neuron 59 (2008) 43-55; DOI: 10.1016/j.neuron.2008. in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo