Accès libre

A Fractional Order Delay Differential Model for Survival of Red Blood Cells in an Animal: Stability Analysis

À propos de cet article

Citez

[1] PODLUBNÝ, I.: Fractional Differential Equations. (An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications). In: Mathematics in Science and Engineering, Vol. 198. Academic Press, Inc., San Diego, CA, 1999. Search in Google Scholar

[2] SAMKO, S. G.—KILBAS, A. A.—MARICHEV, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdon, 1993. Search in Google Scholar

[3] WAŻEWSKA-CZYŻEWSKA, M.—LASOTA, A.: Mathematical problems of the dynamics of a system of red blood cells. Mat. Stos. 6 (1976), no. 3, 23–40. (In Polish) Search in Google Scholar

[4] GYŐRI, I.—LADAS, G.: Oscillation Theory of Delay Differential Equation: With Applications. In: Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1991. Search in Google Scholar

[5] SONG, Y.—WEI, J.—YUAN, Y.: Bifurcation analysis on a survival red blood cells model, J. Math. Anal. Appl. 316 (2006), 459–471.10.1016/j.jmaa.2005.04.051 Search in Google Scholar

[6] FAN, D.—WEI, J.: Bifurcation analysis of discrete survival red blood cells model, Commun Nonlinear Sci. Numer. Simul. 14 (2009), no. 8, 3358–3368. Search in Google Scholar

[7] SONG, Y.: Positive periodic solutions of a periodic survival red blood cell model, Appl. Anal. 84 (2005), no. 11, 1095–1101. Search in Google Scholar

[8] LAKSHMANAN, M.—SENTHILKUMAR, D.V.: Dynamics of Nonlinear Time-Delay Systems. Springer-Verlag, Berlin, 2010.10.1007/978-3-642-14938-2 Search in Google Scholar

[9] DZHALLADOVA, I. A.—M. RŮŽIČKOVÁ, M.: Stability of the equilibrium of nonlinear dynamical systems, Tatra Mt. Math. Publ. 71 (2018), 71–80. Search in Google Scholar

[10] SADANI, I.: On the stability of the functional equation f f(2x+y)+f(x+y2)=2f(x)f(y)f(x)+f(y)+2f(x+y)f(yx)3f(yx)f(x+y)\[f(2x + y) + f(\frac{{x + y}}{2}) = \frac{{2f(x)f(y)}}{{f(x) + f(y)}} + \frac{{2f(x + y)f(y - x)}}{{3f(y - x) - f(x + y)}}\] Tatra Mt. Math. Publ 76 (2020), 71–80. Search in Google Scholar

[11] KHALOUTA, A.—KADE, A.: Solution of The fractional bratu-type equation via frac-tional residual power series method, Tatra Mt. Math. Publ. 76 (2020), no. 1, 127–142. Search in Google Scholar

[12] DENG, W.—LI, C.—LU, J.: Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn. 48 (2007), no. 4, 409–416, doi: 10.1007/s11071-006-9094-0.10.1007/s11071-006-9094-0 Search in Google Scholar

[13] ČERMÁK, J.—DOŠLÁ, Z.—KISELA, T: Fractional differential equations with a constant delay: Stability and asymptotics of solutions, Appl. Math. Comput. 298 (2017), 336–350. Search in Google Scholar

[14] SAWOOR, A. AL.: Stability analysis of fractional-order linear neutral delay differential–algebraic system described by the Caputo–Fabrizio derivative, Adv. Difference Equ. 2020, paper no. 531; (2020), https://doi.org/10.1186/s13662-020-02980-8. Search in Google Scholar

[15] CHARTBUPAPAN, W.—BAGDASAR, O.—MUKDASAI, K.: A novel delay-dependent asymptotic stability conditions for differential and Riemann-Liouville fractional differential neutral systems with constant delays and nonlinear perturbation, Mathematics 8 (2020), no. 1, https://doi.org/10.3390/math8010082.10.3390/math8010082 Search in Google Scholar

[16] RADHA, M.—BALAMURALITHARAN, S.: A study on COVID-19 transmission dynamics: Stability analysis of SEIR model with Hopf bifurcation for effect of time delay, Adv. Differ. Equ. 2020Paper no.523 (2020), https://doi.org/10.1186/s13662-020-02958-6.10.1186/s13662-020-02958-6751346132989381 Search in Google Scholar

[17] PREETHILATHA, V.—RIHAN, F. A.—RAKKIYAPPAN, R.—VELMURUGAN, G.: A fractional order delay differential model for Ebola infection and CD8+ T cells response: Stability analysis and Hopf bifurcation, Int. J. Biomath. 10 (2017), no.8, https://doi.org/10.1142/S179352451750111X.10.1142/S179352451750111X Search in Google Scholar

[18] Y. LI, Y.—WANG, Y.— LI, B.: Existence and finite-time stability of a unique almost periodic positive solution for fractional-order Lasota–Wazewska red blood cell models, Int. J. Biomath. 13, (2020), no.2, 16 pp, https://doi.org/10.1142/S1793524520500138.10.1142/S1793524520500138 Search in Google Scholar

[19] STAMOV, G.—STAMOVA, I.: Impulsive delayed Lasota–Wazewska fractional models: Global stability of integral manifolds, Mathematics 7 (2019), no. 11, 15 pp, https://doi.org/10.3390/math7111025.10.3390/math7111025 Search in Google Scholar

[20] BHALEKAR, S.—DAFTARDAR-GEJJI, V.: A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, J. Fractional Calculus and Appl. 1 (2011), no. 5, 1–9, http://www.fcaj.webs.com/. Search in Google Scholar

eISSN:
1338-9750
Langue:
Anglais
Périodicité:
3 fois par an
Sujets de la revue:
Mathematics, General Mathematics