1. bookVolume 80 (2021): Edition 3 (December 2021)
Détails du magazine
License
Format
Magazine
eISSN
1338-9750
Première parution
12 Nov 2012
Périodicité
3 fois par an
Langues
Anglais
access type Accès libre

A Fractional Order Delay Differential Model for Survival of Red Blood Cells in an Animal: Stability Analysis

Publié en ligne: 01 Jan 2022
Volume & Edition: Volume 80 (2021) - Edition 3 (December 2021)
Pages: 135 - 144
Reçu: 05 Jan 2021
Détails du magazine
License
Format
Magazine
eISSN
1338-9750
Première parution
12 Nov 2012
Périodicité
3 fois par an
Langues
Anglais
Abstract

In this paper, we analyse stability of survival of red blood cells in animal fractional order model with time delay. Results have been illustrated by numerical simulations.

Keywords

[1] PODLUBNÝ, I.: Fractional Differential Equations. (An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications). In: Mathematics in Science and Engineering, Vol. 198. Academic Press, Inc., San Diego, CA, 1999. Search in Google Scholar

[2] SAMKO, S. G.—KILBAS, A. A.—MARICHEV, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdon, 1993. Search in Google Scholar

[3] WAŻEWSKA-CZYŻEWSKA, M.—LASOTA, A.: Mathematical problems of the dynamics of a system of red blood cells. Mat. Stos. 6 (1976), no. 3, 23–40. (In Polish) Search in Google Scholar

[4] GYŐRI, I.—LADAS, G.: Oscillation Theory of Delay Differential Equation: With Applications. In: Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1991. Search in Google Scholar

[5] SONG, Y.—WEI, J.—YUAN, Y.: Bifurcation analysis on a survival red blood cells model, J. Math. Anal. Appl. 316 (2006), 459–471.10.1016/j.jmaa.2005.04.051 Search in Google Scholar

[6] FAN, D.—WEI, J.: Bifurcation analysis of discrete survival red blood cells model, Commun Nonlinear Sci. Numer. Simul. 14 (2009), no. 8, 3358–3368. Search in Google Scholar

[7] SONG, Y.: Positive periodic solutions of a periodic survival red blood cell model, Appl. Anal. 84 (2005), no. 11, 1095–1101. Search in Google Scholar

[8] LAKSHMANAN, M.—SENTHILKUMAR, D.V.: Dynamics of Nonlinear Time-Delay Systems. Springer-Verlag, Berlin, 2010.10.1007/978-3-642-14938-2 Search in Google Scholar

[9] DZHALLADOVA, I. A.—M. RŮŽIČKOVÁ, M.: Stability of the equilibrium of nonlinear dynamical systems, Tatra Mt. Math. Publ. 71 (2018), 71–80. Search in Google Scholar

[10] SADANI, I.: On the stability of the functional equation f f(2x+y)+f(x+y2)=2f(x)f(y)f(x)+f(y)+2f(x+y)f(yx)3f(yx)f(x+y)\[f(2x + y) + f(\frac{{x + y}}{2}) = \frac{{2f(x)f(y)}}{{f(x) + f(y)}} + \frac{{2f(x + y)f(y - x)}}{{3f(y - x) - f(x + y)}}\] Tatra Mt. Math. Publ 76 (2020), 71–80. Search in Google Scholar

[11] KHALOUTA, A.—KADE, A.: Solution of The fractional bratu-type equation via frac-tional residual power series method, Tatra Mt. Math. Publ. 76 (2020), no. 1, 127–142. Search in Google Scholar

[12] DENG, W.—LI, C.—LU, J.: Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn. 48 (2007), no. 4, 409–416, doi: 10.1007/s11071-006-9094-0.10.1007/s11071-006-9094-0 Search in Google Scholar

[13] ČERMÁK, J.—DOŠLÁ, Z.—KISELA, T: Fractional differential equations with a constant delay: Stability and asymptotics of solutions, Appl. Math. Comput. 298 (2017), 336–350. Search in Google Scholar

[14] SAWOOR, A. AL.: Stability analysis of fractional-order linear neutral delay differential–algebraic system described by the Caputo–Fabrizio derivative, Adv. Difference Equ. 2020, paper no. 531; (2020), https://doi.org/10.1186/s13662-020-02980-8. Search in Google Scholar

[15] CHARTBUPAPAN, W.—BAGDASAR, O.—MUKDASAI, K.: A novel delay-dependent asymptotic stability conditions for differential and Riemann-Liouville fractional differential neutral systems with constant delays and nonlinear perturbation, Mathematics 8 (2020), no. 1, https://doi.org/10.3390/math8010082.10.3390/math8010082 Search in Google Scholar

[16] RADHA, M.—BALAMURALITHARAN, S.: A study on COVID-19 transmission dynamics: Stability analysis of SEIR model with Hopf bifurcation for effect of time delay, Adv. Differ. Equ. 2020Paper no.523 (2020), https://doi.org/10.1186/s13662-020-02958-6.10.1186/s13662-020-02958-6751346132989381 Search in Google Scholar

[17] PREETHILATHA, V.—RIHAN, F. A.—RAKKIYAPPAN, R.—VELMURUGAN, G.: A fractional order delay differential model for Ebola infection and CD8+ T cells response: Stability analysis and Hopf bifurcation, Int. J. Biomath. 10 (2017), no.8, https://doi.org/10.1142/S179352451750111X.10.1142/S179352451750111X Search in Google Scholar

[18] Y. LI, Y.—WANG, Y.— LI, B.: Existence and finite-time stability of a unique almost periodic positive solution for fractional-order Lasota–Wazewska red blood cell models, Int. J. Biomath. 13, (2020), no.2, 16 pp, https://doi.org/10.1142/S1793524520500138.10.1142/S1793524520500138 Search in Google Scholar

[19] STAMOV, G.—STAMOVA, I.: Impulsive delayed Lasota–Wazewska fractional models: Global stability of integral manifolds, Mathematics 7 (2019), no. 11, 15 pp, https://doi.org/10.3390/math7111025.10.3390/math7111025 Search in Google Scholar

[20] BHALEKAR, S.—DAFTARDAR-GEJJI, V.: A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, J. Fractional Calculus and Appl. 1 (2011), no. 5, 1–9, http://www.fcaj.webs.com/. Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo