À propos de cet article
Catégorie d'article: research article
Publié en ligne: 08 déc. 2023
Pages: 18 - 32
Reçu: 08 févr. 2023
Accepté: 11 sept. 2023
DOI: https://doi.org/10.2478/tar-2023-0020
Mots clés
© 2023 Jerzy Kozak et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.
![Additive manufactured GE9X engine components: (A) T25 sensor housing; (B) fuel nozzle tip; and (C) low-pressure turbine blades (adopted from reference [1]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6573040e79f7550bc9e9ea22/j_tar-2023-0020_fig_001.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250930%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250930T120501Z&X-Amz-Expires=3600&X-Amz-Signature=a1a11e6481a8638129d72bc04753a769ff4589b7173347e7e43c1c228672ee8c&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 2.
![Scheme of the fabrication stages: A – data preparation, B – manufacturing stage, C – the physical part (figures adopted from reference [2]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6573040e79f7550bc9e9ea22/j_tar-2023-0020_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250930%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250930T120501Z&X-Amz-Expires=3600&X-Amz-Signature=36443526be9a8b1b6fc1cdad971adf8d7d5188d29b6d0e1e77a24e1f85db54cc&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 3.

Figure 4.

Figure 5.

Figure 6.
![The cross-sections of the tracks (A) simulation vs experimental sample. Track width at different laser travel speeds of (B) 1,050 mm/s, (C) 1,250 mm/s and (D) 1,450 mm/s (material: Ti-6Al; laser power: 175 W) (adopted from reference [8]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/6573040e79f7550bc9e9ea22/j_tar-2023-0020_fig_006.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250930%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250930T120501Z&X-Amz-Expires=3600&X-Amz-Signature=4a9acbb354f0194221f05ffd1ff4e373fa58a72b0c41a7bdbead667c92a61a7e&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Thermophysical properties and other parameters used in simulation_
Physical properties of the powder | ||
---|---|---|
Material density | 8,600 kg/m3 | |
Specific heat capacity solid phase | 390 J/kgoK | |
Specific heat capacity liquid phase | 410 J/kgoK | |
Latent heat of melting | 334 [kJ/kg] | |
Melting temperature | 1,380 °C | |
Boiling temperature | 2,930 °C | |
Upper temperature margin | Δ |
30 °C |
Emissivity | 0.7 | |
Process efficiency coefficient | 0.27 |
j_tar-2023-0020_tab_003
Path cross-section area [m3] | |
Specific heat capacity [J/kg·K] | |
Powder bed thickness [μm] | |
Track height [m] | |
Specific latent heat [J/kg] | |
Thermal effective conductivity of powder [W/mK] | |
Track section profile coefficient [-] | |
Laser beam power [W] | |
Hatch spacing [μm] | |
Effective laser beam radius [μm] | |
Melting temperature [K] | |
Boiling temperature [K] | |
Lower temperature limit [K] | |
Upper temperature limit [K] | |
Laser scanning speed [mm/s] | |
Track width [m] | |
Porosity | |
Density [kg/m3] |
Process parameters_
Parameters | Lower limit | Upper limit | Unit |
---|---|---|---|
Laser beam power | 70 | 170 | W |
Scanning speed | 100 | 1,200 | mm/s |
Powder layer thickness | 25 | 35 | μm |