1. bookVolume 223 (2020): Edition 4 (December 2020)
Détails du magazine
License
Format
Magazine
eISSN
2720-4286
Première parution
30 Mar 2016
Périodicité
1 fois par an
Langues
Anglais
access type Accès libre

Mobile Wheeled Robot to Support the Task of the Alarm Sub - Unit

Publié en ligne: 31 Dec 2020
Volume & Edition: Volume 223 (2020) - Edition 4 (December 2020)
Pages: 53 - 66
Détails du magazine
License
Format
Magazine
eISSN
2720-4286
Première parution
30 Mar 2016
Périodicité
1 fois par an
Langues
Anglais
Abstract

The article is a presentation, and detailed description of a mobile, vehicular robot whose task is to support the alarm sub-unit. The project was created in response to the increasing need for monitoring, and recognition of the areas. The robot’s interface was created with the use of integrated development environments for Python. The software implementation was possible due to a minicomputer Raspberry Pi 4 B. The robot’s frame is made out of components which are based on the main chassis. The robot is equipped with compatible sensors and cameras. Those, combined with the interface, are able to give a real-time preview of the area in which the robot is in.

This particular vehicular robot is designed to eliminate the risks caused by tasks of alarm sub-unit, by giving the real-time preview, and analysis of the currently watched area. In addition, it can be used to inspect soldiers in the containment zones, and to help with the identification of unknown objects.

Keywords

[1] Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based Introduction to Programming, Functions, 2019, pp.129-156Search in Google Scholar

[2] Ignacy Dulęba. Metody i algorytmy planowania ruchu robotów mobilnych i manipulacyjnychSearch in Google Scholar

[3] Jung Hyun Choi, Kangwagye Samuel, Kanghyun Nam, Sehoon Oh, An Autonomous Human Following Caddie Robot with High-Level Driving Functions. Electronics 2020, 9, 1516. https://doi.org/10.3390/electronics909151610.3390/electronics9091516Search in Google Scholar

[4] Jurczyk Karolina, Piskur Paweł, Szymak Piotr, Parameters Identification of the Flexible Fin Kinematics Model Using Vision and Genetic Algorithms, Polish Maritime Research, 27(2), 39-47, 2020, doi: https://doi.org/10.2478/pomr-2020-002510.2478/pomr-2020-0025Search in Google Scholar

[5] Lentin Joseph, Nauka robotyki z językiem Python, 2016Search in Google Scholar

[6] Maciej Michałek, Dariusz Pazderski. Sterowanie robotów mobilnych : laboratorium, 2012Search in Google Scholar

[7] Mariusz J. Giergiel, Zenon Hendzel, Wiesław Żylski. Modelowanie i sterowanie mobilnych robotów kołowych, PWN 2013Search in Google Scholar

[8] Mark W. Spong, Seth Hutchinson, M. Vidyasagar, Robot Modeling and Control, 2nd Edition, 2020, pp. 365-373Search in Google Scholar

[9] Matt Timmons-Brown, Learn Robotics with Raspberry Pi: Build and Code Your Own Moving, Sensing, Thinking Robots, 2019,Search in Google Scholar

[10] Peter I. Corke, Robotics, Vision and Control: Fundamental Algorithms in MATLAB, 2nd ed. 2017 EditionSearch in Google Scholar

[11] Piotr Kulczycki, Józef Korbicz, Janusz Kacprzyk. Automatyka, robotyka i przetwarzanie informacji, PWN 2020Search in Google Scholar

[12] Piotr Szymak, Pawel Piskur, Krzysztof Naus. (2020), The Effectiveness of Using a Pre-trained Deep Learning Neural Networks for Object Classification in Underwater Video, Remote Sensing. 12.2020, doi: 10.3390/rs12183020.10.3390/rs12183020Search in Google Scholar

[13] Piskur Pawel; Szymak Piotr; Jaskólski Krzysztof; Flis, Leszek; Gąsiorowski Marek, Hydro-acoustic System in a Biomimetic Underwater Vehicle to Avoid Collision with Vessels with Low-Speed Propellers in a Controlled Environment. Sensors, 2020, https://doi.org/10.3390/s2004096810.3390/s20040968707042232054036Search in Google Scholar

[14] Przybylski Michał, Szymak Piotr, Kitowski Zygmunt, Piskur Pawel, Comparison of Different Course Controllers of Biomimetic Underwater Vehicle with Two Tail Fins. In: Bartoszewicz A., Kabziński J., Kacprzyk J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham., 2020, https://doi.org/10.1007/978-3-030-50936-1_12510.1007/978-3-030-50936-1_125Search in Google Scholar

[15] Spyros G. Tzafestas, Introduction to Mobile Robot Control, Mobile Robot Control V: Vision-Based Method, 2014, pp. 319-351.10.1016/B978-0-12-417049-0.00009-2Search in Google Scholar

[16] Steven F. Lott Python : programowanie funkcyjne, 2019Search in Google Scholar

[17] Wei Bin, A Low Cost Introductory Platform for Advanced Robotic Control. In: Venture G., Solis J., Takeda Y., Konno A. (eds) ROMANSY 23 - Robot Design, Dynamics and Control. ROMANSY 2020. CISM International Centre for Mechanical Sciences (Courses and Lectures), vol 601. Springer, Cham., 2020, https://doi.org/10.1007/978-3-030-58380-4_1810.1007/978-3-030-58380-4_18Search in Google Scholar

[18] Wiktor Hudy, Kazimierz Jaracz, Laboratorium automatyki i robotyki, 2013Search in Google Scholar

[19] Wojciech Kaczmarek, Jarosław Panasiuk, Szymon Borys. Środowiska programowania robotów, PWN 2020Search in Google Scholar

[20] www.electroschematics.com/wp-content/uploads/2013/07/HCSR04-datasheet-version-1.pdfSearch in Google Scholar

[21] www.piap.pl/produkt/roboty-mobilne-do-zastosowan-specjalnych/Search in Google Scholar

[22] www.robotnik.eu/products/mobile-robots/summit-xl-hl/Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo