À propos de cet article

Citez

1. Villegas EA, Manzanera S, Lago CM, Hervella L, Sawides L, Artal P. (2019). Effect of Crystalline Lens Aberrations on Adaptive Optics Simulation of Intraocular Lenses. J Refract Surg. 35(2): 126–131. doi: 10.3928/1081597X-20181212-02..10.3928/1081597X-20181212-02 Search in Google Scholar

2. Yuan XB, Zhang DY, Chen SJ, Wu PC, Zhang WF. (2019). Prevalence of cataract among the population aged 50 years and over at different altitudes in Gansu Province. Zhonghua Yan Ke Za Zhi. 55(8): 589–594. doi: 10.3760/cma.j.issn.0412-4081.2019.08.008.. Search in Google Scholar

3. Fujii N, Takata T, Fujii N, Aki K. (2016). Isomerization of aspartyl residues in crystallins and its influence upon cataract. Biochim Biophys Acta. 1860 (1 Pt B): 183–91..10.1016/j.bbagen.2015.08.001 Search in Google Scholar

4. Peterson SR, Silva PA, Murtha TJ, Sun JK. (2018). Cataract Surgery in Patients with Diabetes: Management Strategies. Semin Ophthalmol. 33(1): 75–82. doi: 10.1080/08820538.2017.1353817.10.1080/08820538.2017.135381729144826 Search in Google Scholar

5. Keel S, He M. (2018). Risk factors for age-related cataract. Clin Exp Ophthalmol. 46(4): 327–328. doi: 10.1111/ceo.13309.10.1111/ceo.1330929898261 Search in Google Scholar

6. Jiang H, Yin Y, Wu CR, Liu Y, Guo F, Li M, Ma L. (2019). Dietary vitamin and carotenoid intake and risk of age-related cataract. Am J Clin Nutr. 109(1): 43–54. doi: 10.1093/ajcn/nqy270.10.1093/ajcn/nqy27030624584 Search in Google Scholar

7. Truscott RJW, Friedrich MG. (2019). Molecular Processes Implicated in Human Age-Related Nuclear Cataract. Invest Ophthalmol Vis Sci. 60(15):5007-21. doi: 10.1167/iovs.19-27535.10.1167/iovs.19-27535704321431791064 Search in Google Scholar

8. Abdelkader H, Alany RG, Pierscionek B. (2015). Agerelated cataract and drug therapy: opportunities and challenges for topical antioxidant delivery to the lens. J Pharm Pharmacol. 67(4): 537-50. doi: 10.1111/jphp.12355.10.1111/jphp.1235525643848 Search in Google Scholar

9. Bahrami M, Hoshino M, Pierscionek B, Yagi N, Regini J, Uesugi K. (2015). Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation. Exp Eye Res. 140:19-27. doi: 10.1016/j.exer.2015.10.1016/j.exer.2015.08.011 Search in Google Scholar

10. Lundström M, Stenevi U (2016). Indications for cataract surgery in a changing world. Acta Ophthalmol. 94(1):9. doi: 10.1111/aos.12820.10.1111/aos.1282026790636 Search in Google Scholar

11. Alboim C, Kliemann RB, Soares LE, Ferreira MM, Polanczyk CA, Biolo A. (2016). The impact of preoperative evaluation on perioperative events in patients undergoing cataract surgery: a cohort study. Eye (Lond). 30(12):1614–1622. doi: 10.1038/eye.2016.203.10.1038/eye.2016.203517776527636228 Search in Google Scholar

12. Davis G. (2016). The Evolution of Cataract Surgery. Mo Med. 113(1): 58–62. Search in Google Scholar

13. Mamalis N (2016). Phacoemulsification technology update. J Cataract Refract Surg. 42(5):651-2. doi: 10.1016/j.jcrs.2016.05.001.10.1016/j.jcrs.2016.05.00127255238 Search in Google Scholar

14. Pai HV, Pathan A, Kamath YS. (2019). A comparison of posterior capsular opacifica tion after implantation of three different hydrophobic square edge intraocular lenses. Indian J Ophthalmol. 67(9):1424-27.10.4103/ijo.IJO_219_19 Search in Google Scholar

15. Soldini M. (2013). Internal medicine and cardiovascular evaluation of preoperative and perioperative patients undergoing ophthalmic surgery. Clin Ter. 164(5): 437-42. doi: 10.7417/CT.2013.1610. Search in Google Scholar

16. Slowinski K, Misiuk-Hojlo M, Szalinski M. (2007). Influence of material on biocompatibility of intraocular lenses. Polimery w Medycynie. 37(1):35–45. Search in Google Scholar

17. Pérez-Vives C (2018). Biomaterial Influence on Intraocular Lens Performance: An Overview. J Ophthalmol. 2018:2687385. doi: 10.1155/2018/2687385..10.1155/2018/2687385 Search in Google Scholar

18. Kato K, Miyake K, Hirano K, Kondo M. (2019). Management of Postoperative Inflammation and Dry Eye After Cataract Surgery. Cornea. 38(1):25-33. doi: 10.1097/ICO.0000000000002125.10.1097/ICO.000000000000212531498249 Search in Google Scholar

19. Braga-Mele R, Mednick Z. (2016). Pocket-chop technique for phacoemulsification. J Cataract Refract Surg. 42(10):1531-1532. doi: 10.1016/j.jcrs.2016.09.001.10.1016/j.jcrs.2016.09.00127839610 Search in Google Scholar

20. Kim DB. (2018). Trailing-haptic-first modification of double-needle intrascleral haptic fixation technique. J Cataract Refract Surg. 44(4):424-428. doi: 10.1016/j.jcrs.2018.01.027.10.1016/j.jcrs.2018.01.02729778105 Search in Google Scholar

21. Morgan-Warren PJ, Smith JA. (2013). Intraocular lensedge design and material factors contributing to posterior- capsulotomy rates: comparing Hoya FY60aD, PY60aD, and AcrySof SN60WF. Clin Ophthalmol. 7:1661-7. doi: 10.2147/OPTH.S48824.10.2147/OPTH.S48824375570124003302 Search in Google Scholar

22. Hernandez-Bogantes E, Navas A, Naranjo A, Amescua G, Graue-Hernandez EO, Flynn HW Jr, et al. (2019). Toxic anterior segment syndrome: A review. Surv Ophthalmol. 64(4):463-76. doi: 10.1016/j.survophthal. 2019.01.009.10.1016/j.survophthal.2019.01.009 Search in Google Scholar

23. Balendiran V, Werner L, Ellis N, Shumway C, Jiang B, Kamae K, et al. (2020). Uveal and capsular biocompatibility of a new hydrophobic acrylic microincision intraocular lens. J Cataract Refract Surg. 46(3):459-464. doi: 10.1097/j.jcrs.0000000000000117.10.1097/j.jcrs.000000000000011732079847 Search in Google Scholar

24. Wormstone IM, Eldred JA. (2016).Experimental models for posterior capsule opacification research. Exp Eye Res. 142:2-12. doi: 10.1016/j.exer.2015.04.021.10.1016/j.exer.2015.04.02125939555 Search in Google Scholar

25. McCafferty S, Harris A, Kew C, Kassm T, Lane L, Levine J, et al. (2017). Pseudophakic cystoid macular edema prevention and risk factors; prospective study with adjunctive once daily topical nepafenac 0.3% versus placebo. BMC Ophthalmol. 17(1):16.10.1186/s12886-017-0405-7 Search in Google Scholar

26. Jiang J, Shihan MH, Wang Y, Duncan MK. (2018). Lens Epithelial Cells Initiate an Inflammatory Response Following Cataract Surgery. Invest Ophthalmol Vis Sci. 59(12):4986-4997. doi: 10.1167/iovs.18-25067..10.1167/iovs.18-25067 Search in Google Scholar

27. Li H, Yuan X, Li J, Tang X. (2015). Implication of Smad2 and Smad3 in transforming growth factor-β-induced posterior capsular opacification of human lens epithelial cells. Curr Eye Res. 40(4):386-97. doi: 10.3109/02713683.2014.925932..10.3109/02713683.2014.925932 Search in Google Scholar

28. Zhu XJ, Chen MJ, Zhang KK, Yang J, Lu Y. (2016). Elevated TGF-β2 level in aqueous humor of cataract patients with high myopia: Potential risk factor for capsule contraction syndrome. J Cataract Refract Surg. 42(2):232-8. doi: 10.1016/j.jcrs.2015.09.027.10.1016/j.jcrs.2015.09.02727026447 Search in Google Scholar

29. Todorovic D, Sarenac-Vulovic T, Petrovic N, Jovanovic S, Janicijevic-Petrovic M, Đokovic D, et al. (2020). The effect of intraocular lens material and postoperative therapy on the posterior capsule opacification development after the senile cataract surgery. Srp Arh Celok Lek. 148(5-6):333-37 doi: 10.2298/SARH181211118T.10.2298/SARH181211118T Search in Google Scholar

30. Sarenac Vulovic T, Pavlovic S, Janicijevic K, Todorovic D, Lutovac M, Paunovic S, et al. (2018). Tear film stability in patients with pseudexfoliation, Ser J Exp Clin Res. 19 (3): 243-46 doi: 10.1515/SJECR-2017-0002.10.1515/sjecr-2017-0002 Search in Google Scholar

31. Kuszak JR, Brown HG (1994). Embryology and anatomy of the lens. In: Albert DM, Jakobiec FA, ed. Principles and practice of ophthalmology. Basic sciences, Philadelphia: WB Saunders. 82–96. Search in Google Scholar

32. Olivero DK, Furcht LT. (1996). Type IV collagen, laminin, and fibronectin promote the adhesion and migration of rabbit lens epithelial cells. Invest Ophthalmol Vis Sci. 34: 2825–2834. Search in Google Scholar

33. Li JH, Dong Z, Wang NL. (2011).Experimental study on effects of matrix metalloproteinase inhibitor on posterior capsule opacification in rabbits. Zhonghua Yan Ke Za Zhi. 47(4):314-319. Search in Google Scholar

34. Hawlina G, Perovšek D, Drnovšek-Olup B, Mozina J, Gregorčič P. (2014).Optical coherence tomography for an in-vivo study of posterior-capsule-opacification types and their influence on the total-pulse energy required for Nd:YAG capsulotomy: a case series. BMC Ophthalmol. 14:131. doi: 10.1186/1471-2415-14-131.10.1186/1471-2415-14-131427345725403826 Search in Google Scholar

35. Özyol P, Özyol E, Karel F. (2017). Biocompatibility of Intraocular Lenses. Turk J Ophthalmol. 47(4): 221–25. Published online 2017; 15. doi: 10.4274/tjo.10437.10.4274/tjo.10437556355128845327 Search in Google Scholar

36. Chengzhe Lu C, Shasha Yu S, Hui Song H, Yun Zhao Y, Shiyong Xie S, Xin Tang X, et al. (2019). Posterior capsular opacification comparison between morphology and objective visual function. BMC Ophthalmol. 2019;19:40. Published online 2019 Feb 4. doi: 10.1186/s128.10.1186/s12886-019-1051-z Search in Google Scholar

37. Nguyen CL, Francis IC. (2017). Mechanical anterior lens capsule polishing under viscoelastic during phacoemulsification cataract surgery.Clin Exp Ophthalmol. 45(6):654-656. doi: 10.1111/ceo.12924.10.1111/ceo.1292428165186 Search in Google Scholar

38. Langwińska-Wośko Е, Broniek-Kowalik К Szulborski К. (2011). The impact of capsulorhexis diameter, localization and shape on posterior capsule opacification. Med Sci Monit. 17(10):577-82.10.12659/MSM.881984 Search in Google Scholar

39. Ursell P, Dhariwal M, Majirska K, Ender F, Kalson-RayS, Venerus A, et al. (2018). Three-year incidence of Nd:YAG capsulotomy and posterior capsule opacification and its relationship to monofocal acrylic IOL biomaterial: a UK Real World Evidence study. Eye (Lond). 32(10): 1579–89.10.1038/s41433-018-0131-2 Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, other