Accès libre

Experimental and statistical analysis of blast-induced ground vibrations (BIGV) prediction in Senegal’s quarry

, , ,  et   
30 déc. 2019
À propos de cet article

Citez
Télécharger la couverture

Figure 1

Location of the Bargny site.
Location of the Bargny site.

Figure 2

(a) Vibration monitoring sensor; (b) ANFO truck loader; (c) Blast area inspection; (d) Bottom charge with cartridges and electric detonators.
(a) Vibration monitoring sensor; (b) ANFO truck loader; (c) Blast area inspection; (d) Bottom charge with cartridges and electric detonators.

Figure 3

Blast’s location and the assessed measurement points.
Blast’s location and the assessed measurement points.

Figure 4

(a) Signal analysis at “Conveyor belt” (charge weight per delay 50 kg – distance from blast 436 m); (b) Signal analysis at “Panel 1 (Upper exploitation level)” (charge weight per delay 50 kg – distance from blast 150 m).
(a) Signal analysis at “Conveyor belt” (charge weight per delay 50 kg – distance from blast 436 m); (b) Signal analysis at “Panel 1 (Upper exploitation level)” (charge weight per delay 50 kg – distance from blast 150 m).

Figure 5

PPV and its associated frequencies with USBM RI 8507 criterion. (a) “Conveyor belt” site, (b) “Panel 1 (Upper exploitation level)” site.
PPV and its associated frequencies with USBM RI 8507 criterion. (a) “Conveyor belt” site, (b) “Panel 1 (Upper exploitation level)” site.

Figure 6

Fast Fourier Transform (FFT) analysis of the vibration signal at (a) “Conveyor belt” site and (b) “Panel 1 (Upper exploitation level)”.
Fast Fourier Transform (FFT) analysis of the vibration signal at (a) “Conveyor belt” site and (b) “Panel 1 (Upper exploitation level)”.

Figure 7

(a) Least squares regression and 95% confidence level curves with the used trial blasts; (b) Observed production blasts and 95% confidence level curves.
(a) Least squares regression and 95% confidence level curves with the used trial blasts; (b) Observed production blasts and 95% confidence level curves.

Figure 8

Safe charge weight per delay (Q) for different distances and velocities.
Safe charge weight per delay (Q) for different distances and velocities.

Figure 9

(a) Safe charge weight per delay (Q) for “Conveyor belt” site; (b) Safe charge weight per delay for “Panel1 (Upper exploitation level)” site.
(a) Safe charge weight per delay (Q) for “Conveyor belt” site; (b) Safe charge weight per delay for “Panel1 (Upper exploitation level)” site.

Figure 10

The blast design of charge structure in different site: (a) “Conveyor belt” site; (b) “Panel 1 (Upper exploitation level)” site.
The blast design of charge structure in different site: (a) “Conveyor belt” site; (b) “Panel 1 (Upper exploitation level)” site.

Calculated theoretical specifications[44]_

Physical propertiesDynaroc 6 ANitram 9ANFO
Gas volume (0oC/1At) (L/kg)893857898
Total mass energy (MJ/kg)4.54.24.6
Total volume energy (MJ/L)6.453.7
Detonation pressure (confined) (φ 80 mm) (Gpa)13.613.56.9
Detonation temperature (oC)-22272830
Velocity of detonation (m/s)-62005200

Trial blast experiments (from T B1 to T B13) and the recording of data (velocity components and maximal velocity)_

Trial blast (N)Measuring pointsMeasurement distance (m)Maximal charge per delay (kg)Sensor IDVelocities (mm/s)Maximal velocity (mm/s)
LongitudinalVerticalTransversal
DG606156531.42.470.822.47
1P1 (Lower exploitation level)8415202215.9431.8223.531.82
P1 (Upper exploitation level)1431513978.764.78.76
Lake Ddoudj291152020810.547.4310.54
Macodo5291513182.672.81.012.8
DG613306531.714.121.274.12
2P1 (Upper exploitation level)1363013911.0513.847.6213.84
P1 (Lower exploitation level)9230202220.3237.7239.8839.88
Lake Ddoudj2973020209.4615.5512.4415.55
Macodo5243013184.194.571.384.57
DG634456531.783.561.143.56
3P1 (Upper exploitation level)1434513911.1811.688.2611.68
P1 (Lower exploitation level)11045202220.922.124.724.7
Lake Ddoudj3204520207.6217.0814.9217.08
Macodo5384513185.715.332.545.71
DG582456530.51.010.71.01
4P1 (Upper exploitation level)174451398.648.256.738.64
P1 (Lower exploitation level)5845202210.7340.452540.45
Lake Ddoudj2714520203.895.712.985.71
Macodo5554513181.522.161.42.16
Conveyor belt4691006532.486.982.356.98
5P1 (Upper exploitation level)7710013942.6725.9125.9142.67
Garage station63610020222.544.322.14.32
Lake Ddoudj30210020205.7810.868.1310.86
Macodo40610013186.869.272.549.27
Conveyor belt4581406532.166.352.416.35
6P1 (Upper exploitation level)8214013948.2639.6225.448.26
Garage station62414020222.0331.713
Lake Ddoudj30014020205.338.765.98.76
Macodo45514013186.18.543.438.54
Conveyor belt436506535.3413.973.8713.97
7P1 (Upper exploitation level)150501391313.848.2513.84
Garage station5975020224.767.892.987.89
P1 (Upper exploitation level)8950202050.142.4235.4350.1
Macodo5405013188.257.492.798.25
Conveyor belt446756534.0611.943.8111.94
8P1 (Upper exploitation level)1387513913.217.88.2517.8
Garage station6077520223.365.92.415.9
P1 (Lower exploitation level)9875202052.9654.0423.0554.04
Macodo5297513187.8782.548
9P2 (Upper exploitation level)5715.5202247.5661.9827.8761.98
P1 (Upper exploitation level)63415.51391.270.891.41.4
Garage station49515.520208.067.375.338.06
Macodo103415.513180.510.760.130.76
10P2 (Upper exploitation level)64312022125.286.3633.33125.22
P1 (Upper exploitation level)621311391.521.142.162.16
Garage station5003120208.137.55.98.13
Macodo10203113180.8910.251
Diao1429476530.380.570.250.57
11P2 (Upper exploitation level)76472022125.4112.737.46125.41
Garage station5114720209.089.657.49.65
Macodo10174713181.651.90.511.9
P1 (Upper exploitation level)618471392.672.283.813.81
Diao1422636530.380.70.250.7
12P2 (Upper exploitation level)70632022126.6105.532.51126.55
Garage station5076320208.958.827.118.95
Macodo10256313181.92.030.512.03
P1 (Upper exploitation level)626631392.672.414.064.06
Diao137944.16530.250.440.190.44
13P2 (Upper exploitation level)19844.1202228.1912.3217.828.19
Garage station55544.120202.852.792.542.85

Technical specifications of “Mini seis” measuring device[43]_

Acquisition2048 information/lane/second
Storagestoring records on internal memory
Duration of registration4 seconds
Triggering seismic acquisitionby exceeding the minimum threshold of the sensors
Tri-directional geophones4.5 Hertz electronically corrected at 2 Hertz

Summary of various PPV models_

ReferencesEmpirical modelsReferencesEmpirical models
1Duvall et al. [28]Vppv=k(RW)b${{V}_{ppv}}=k{{\left( \frac{R}{\sqrt{W}} \right)}^{-b}}$7Roy et al. [34]Vppv=n+k(RW)1${{V}_{ppv}}=n+k{{\left( \frac{R}{\sqrt{W}} \right)}^{-1}}$
2Langefors et al. [35]Vppv=k(WR23)b2${{V}_{ppv}}=k{{\left( \frac{W}{{{R}^{\frac{2}{3}}}} \right)}^{\frac{b}{2}}}$8Murmu et al. [36]Vppv=k(RQ)bβγ${{V}_{ppv}}=k{{\left( \frac{R}{\sqrt{Q}} \right)}^{-b}}{{\beta }^{\gamma }}$
3Ambraseys et al. [37]Vppv=k(RW3)b${{V}_{ppv}}=k{{\left( \frac{R}{\sqrt[3]{W}} \right)}^{-b}}$9Rai et al. [38]Vppv=kRbWaeαR${{V}_{ppv}}=k{{R}^{-b}}{{W}^{a}}{{e}^{-\alpha R}}$
4IS: 6922 [39]Vppv=k(R23W)b${{V}_{ppv}}=k{{\left( \frac{{{R}^{\frac{2}{3}}}}{\sqrt{W}} \right)}^{-b}}$10Ak et al. [40]Vppv=k(RW)bλα${{V}_{ppv}}=k{{\left( \frac{R}{\sqrt{W}} \right)}^{-b}}{{\lambda }^{\alpha }}$
5Ghosh et al. [41]Vppv=k(RW)beαR${{V}_{ppv}}=k{{\left( \frac{R}{\sqrt{W}} \right)}^{-b}}{{e}^{-\alpha R}}$11Simangunsong et
al. [42]Vppv=k((1+cos(θi)+Nc)RQ)b${{V}_{ppv}}=k{{\left( \left( 1+\cos \left( {{\theta }_{i}} \right)+{{N}_{c}} \right)\frac{R}{\sqrt{Q}} \right)}^{-b}}$
6Ghosh et al. [41]Vppv=k(RW3)beαR${{V}_{ppv}}=k{{\left( \frac{R}{\sqrt[3]{W}} \right)}^{-b}}{{e}^{-\alpha R}}$12Kumar et al. [9]Vppv=fc0.642D1.463γ${{V}_{ppv}}=\frac{f_{c}^{0.642}{{D}^{-1.463}}}{\gamma }$