Accès libre

Optical dating of alluvial deposits at the orogenic front of the andean precordillera (Mendoza, Argentina)

À propos de cet article

Citez

[1] Adamiec G and Aitken M, 1998. Dose-rate conversion factors: update. Ancient TL 16(2): 37–50. Search in Google Scholar

[2] Aitken MJ, 1985. Thermoluminescence Dating. Academic Press, New York: 351pp. Search in Google Scholar

[3] Alappat L, Vink A, Tsukamoto S and Frechen M, 2010. Establishing the Late Pleistocene-Holocene sedimentation boundary in the southern North Sea using OSL dating of shallow continental shelf sediments. Proceedings of the Geologists’ Association 121(1): 43–54, DOI 10.1016/j.pgeola.2009.12.006. http://dx.doi.org/10.1016/j.pgeola.2009.12.00610.1016/j.pgeola.2009.12.006Search in Google Scholar

[4] Anders MD, Pederson JL, Rittenour TM, Sharp WD, Gosse JC, Karlstrom KE, Crossey LJ, Goble RJ, Stockli L and Yang GA, 2005. Pleistocene geomorphology and geochronology of eastern Grand Canyon: linkages of landscape components during climate changes. Quaternary Science Reviews 24(23–24): 2428–2448, DOI 10.1016/j.quascirev.2005.03.015. http://dx.doi.org/10.1016/j.quascirev.2005.03.01510.1016/j.quascirev.2005.03.015Search in Google Scholar

[5] Arnold LJ and Roberts RG, 2009. Stochastic modelling of multi-grain equivalent dose (De) distributions: Implications for OSL dating of sediment mixtures. Quaternary Geochronology 4(3): 204–230, DOI 10.1016/j.quageo.2008.12.001. http://dx.doi.org/10.1016/j.quageo.2008.12.00110.1016/j.quageo.2008.12.001Search in Google Scholar

[6] Arnold LJ, Bailey RM and Tucker, GE, 2007. Statistical treatment of fluvial dose distributions from southern Colorado arroyo deposits. Quaternary Geochronology 2(1–4): 162–167, DOI 10.1016/j.quageo.2006.05.003. http://dx.doi.org/10.1016/j.quageo.2006.05.00310.1016/j.quageo.2006.05.003Search in Google Scholar

[7] Askew BL and Algermissen ST, 1985. Catalog of Earthquakes for South America: Hypocenter and Intensity Data. Volumes 4, 6, 7a–c, CERESIS, Lima. Search in Google Scholar

[8] Bailey RM and Arnold LJ, 2006. Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose. Quaternary Science Reviews 25(19–20): 2475–2502, DOI 10.1016/j.quascirev.2005.09.012. http://dx.doi.org/10.1016/j.quascirev.2005.09.01210.1016/j.quascirev.2005.09.012Search in Google Scholar

[9] Banerjee D, Murray AS, Bøtter-Jensen L and Lang A, 2001. Equivalent dose estimation using a single aliquot of polymineral fine grains. Radiation Measurements 33(1): 73–94, DOI 10.1016/S1350-4487(00)00101-3. http://dx.doi.org/10.1016/S1350-4487(00)00101-310.1016/S1350-4487(00)00101-3Search in Google Scholar

[10] Blair MW, Yukihara EG and McKeever SWS, 2005. Experiences with single-aliquot OSL procedures using coarse-grain feldspars. Radiation Measurements 39(4): 361–374, DOI 10.1016/j.radmeas.2004.05.008. http://dx.doi.org/10.1016/j.radmeas.2004.05.00810.1016/j.radmeas.2004.05.008Search in Google Scholar

[11] Bøtter-Jensen L, Andersen CE, Duller GAT and Murray AS, 2003. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiation Measurements 37(4–5): 535–541, DOI 10.1016/S1350-4487(03)00020-9. http://dx.doi.org/10.1016/S1350-4487(03)00020-910.1016/S1350-4487(03)00020-9Search in Google Scholar

[12] Buylaert JP, Murray AS, Thomsen KJ and Jain M, 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44(5–6): 560–565, DOI 10.1016/j.radmeas.2009.02.007. http://dx.doi.org/10.1016/j.radmeas.2009.02.00710.1016/j.radmeas.2009.02.007Search in Google Scholar

[13] Cunningham AC and Wallinga J, 2010. Selection of integration time intervals for quartz OSL decay curves. Quaternary Geochronology 5(6): 657–666, DOI 10.1016/j.quageo.2010.08.004. http://dx.doi.org/10.1016/j.quageo.2010.08.00410.1016/j.quageo.2010.08.004Search in Google Scholar

[14] Cupper ML, 2006. Luminescence and radiocarbon chronologies of playa sedimentation in the Murray Basin, southeastern Australia. Quaternary Science Reviews 25(19–20): 2594–2607, DOI 10.1016/j.quascirev.2005.09.011. http://dx.doi.org/10.1016/j.quascirev.2005.09.01110.1016/j.quascirev.2005.09.011Search in Google Scholar

[15] D’Antonio H, 1983. Pollen analysis of Gruta del Indio. Quaternary of South America and Antarctic Peninsula 1: 83–104. 10.1201/9781003079187-6Search in Google Scholar

[16] DeLong SB and Arnold LJ, 2007. Dating alluvial deposits with optically stimulated luminescence, AMS 14C and cosmogenic techniques, western Transverse Ranges, California, USA. Quaternary Geo-chronology 2(1–4): 129–136, DOI 10.1016/j.quageo.2006.03.012. 10.1016/j.quageo.2006.03.012Search in Google Scholar

[17] Duller GAT, 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37(2): 161–165, DOI 10.1016/s1350-4487(02)00170-1. http://dx.doi.org/10.1016/S1350-4487(02)00170-110.1016/S1350-4487(02)00170-1Search in Google Scholar

[18] Fattahi M, Walker R, Hollingsworth J, Bahroudi A, Nazari H, Talebian M, Armitage S and Stokes S, 2006. Holocene slip-rate on the Sab-zevar thrust fault, NE Iran, determined using optically stimulated luminescence (OSL). Earth and Planetary Science Letters 245(3–4): 673–684, DOI 10.1016/j.epsl.2006.03.027. http://dx.doi.org/10.1016/j.epsl.2006.03.02710.1016/j.epsl.2006.03.027Search in Google Scholar

[19] Feathers JK, Holliday VT and Meltzer DJ, 2006. Optically stimulated luminescence dating of Southern High Plains archaeological sites. Journal of Archaeological Science 33(12): 1651–1665, DOI 10.1016/j.jas.2006.02.013. http://dx.doi.org/10.1016/j.jas.2006.02.01310.1016/j.jas.2006.02.013Search in Google Scholar

[20] Folguera A, Etcheverría M, Pazos PJ, Giambiagi L, Fauqué L, Cortés JM, Rodríguez MF, Irigoyen MV and Fusari C, 2003. Hoja Geológica 3369-15, Potrerillos. Provincia de Mendoza (Geological Map 3369-15, Potrerillos. Mendoza province). Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino. Boletín 301, Buenos Aires: 144pp (in Spanish). Search in Google Scholar

[21] Folz E, Bodu P, Bonte P, Joron JL, Mercier N and Reyss JL, 2001. OSL dating of fluvial quartz from Le Closeau, a Late Paleolithic site near Paris — comparison with C-14 chronology. Quaternary Science Reviews 20(5–9): 927–933, DOI 10.1016/S0277-3791(00)00062-7. http://dx.doi.org/10.1016/S0277-3791(00)00062-710.1016/S0277-3791(00)00062-7Search in Google Scholar

[22] Galbraith RF and Green PF, 1990. Estimating the component ages in a finite mixture. Nuclear Tracks and Radiation Measurements 17(3): 197–206, DOI 10.1016/1359-0189(90)90035-V. http://dx.doi.org/10.1016/1359-0189(90)90035-V10.1016/1359-0189(90)90035-VSearch in Google Scholar

[23] Galbraith RF and Laslett GM, 1993. Statistical models for mixed fission track ages. Nuclear Tracks and Radiation Measurements 21(4): 459–470, DOI 10.1016/1359-0189(93)90185-C. http://dx.doi.org/10.1016/1359-0189(93)90185-C10.1016/1359-0189(93)90185-CSearch in Google Scholar

[24] Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part 1. Experimental design and statistical models. Archaeometry 41(2): 339–364, DOI 10.1111/j.1475-4754.1999.tb00987.x. http://dx.doi.org/10.1111/j.1475-4754.1999.tb00987.x10.1111/j.1475-4754.1999.tb00987.xSearch in Google Scholar

[25] Galbraith RF, Roberts RG and Yoshida H, 2005. Error variation in OSL palaeodose estimates from single aliquots of quartz: a factorial ex-periment. Radiation Measurements 39(3): 289–307, DOI 10.1016/j.radmeas.2004.03.023. http://dx.doi.org/10.1016/j.radmeas.2004.03.02310.1016/j.radmeas.2004.03.023Search in Google Scholar

[26] García A, Zárate M and Paez MM, 1999. The Pleistocene/Holocene transition and human occupation in the Central Andes of Argentina: Agua de la Cueva locality. Quaternary International 53–54: 43–52, DOI 10.1016/S1040-6182(98)00006-8. http://dx.doi.org/10.1016/S1040-6182(98)00006-810.1016/S1040-6182(98)00006-8Search in Google Scholar

[27] Hancock GS and Anderson RS, 2002. Numerical modeling of fluvial strathterrace formation in response to oscillating climate. Geological Society of America Bulletin 114(9): 1131–1142, DOI 10.1130/0016-7606(2002)114. 10.1130/0016-7606(2002)114<1131:NMOFST>2.0.CO;2Search in Google Scholar

[28] Hetzel R, Niedermann S, Tao MX, Kubik PW and Strecker MR, 2006. Climatic versus tectonic control on river incision at the margin of NE Tibet: 10Be exposure dating of river terraces at the mountain front of the Qilian Shan. Journal of Geophysical Research 111, F03012. DOI 10.1029/2005jf000352. http://dx.doi.org/10.1029/2005JF00035210.1029/2005JF000352Search in Google Scholar

[29] Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38(7): 1093–1106, DOI 10.1139/cjes-38-7-1093. http://dx.doi.org/10.1139/e01-01310.1139/e01-013Search in Google Scholar

[30] Jacobs Z, Duller GAT and Wintle AG, 2006. Interpretation of single grain De distributions and calculation of DeRadiation Measurements 41(3): 264–277, DOI 10.1016/j.radmeas.2005.07.027. http://dx.doi.org/10.1016/j.radmeas.2005.07.02710.1016/j.radmeas.2005.07.027Search in Google Scholar

[31] Jacobs Z, Wintle AG, Roberts RG and Duller GAT, 2008. Equivalent dose distributions from single grains of quartz at Sibudu, South Africa: context, causes and consequences for optical dating of archaeological deposits. Journal of Archaeological Science 35(7): 1808–1820, DOI 10.1016/j.jas.2007.11.027. http://dx.doi.org/10.1016/j.jas.2007.11.02710.1016/j.jas.2007.11.027Search in Google Scholar

[32] Jain M, Murray AS and Bøtter-Jensen L, 2004. Optically stimulated luminescence dating: How significant is incomplete bleaching in fluvial environments. Quaternaire 15(1–2): 143–157. http://dx.doi.org/10.3406/quate.2004.176210.3406/quate.2004.1762Search in Google Scholar

[33] Kadinsky-Cade K, Reilinger R and Isacks B, 1985. Surface deformation associated with the November 23, 1977, Caucete, Argentina, earthquake sequence. Journal of Geophysical Research 90(B14): 2691–2700, DOI 10.1029/JB090iB14p12691. 10.1029/JB090iB14p12691Search in Google Scholar

[34] Kurth G, Phillips FM, Reheis MC, Redwine JL and Paces JB, 2011. Cosmogenic nuclide and uranium-series dating of old, high shore-lines in the western Great Basin, USA. Geological Society of America Bulletin 123(3–4): 744–768, DOI 10.1130/b30010.1. http://dx.doi.org/10.1130/B30010.110.1130/B30010.1Search in Google Scholar

[35] Lauer T, Frechen M, Hoselmann C and Tsukamoto S, 2010. Fluvial aggradation phases in the Upper Rhine Graben — New insights by quartz OSL dating. Proceedings of the Geologists’ Association 121: 154–161, DOI 10.1016/j.pgeola.2009.10.006. http://dx.doi.org/10.1016/j.pgeola.2009.10.00610.1016/j.pgeola.2009.10.006Search in Google Scholar

[36] Madsen AT, Duller GAT, Donnelly JP, Roberts HM and Wintle AG, 2009. A chronology of hurricane landfalls at Little Sippewissett Marsh, Massachusetts, USA, using optical dating. Geomorphology 109(1–2): 36–45, DOI 10.1016/j.geomorph.2008.08.023. http://dx.doi.org/10.1016/j.geomorph.2008.08.02310.1016/j.geomorph.2008.08.023Search in Google Scholar

[37] Magee JW, Miller GH, Spooner NA, Questiaux DG, McCulloch MT and Clark PA, 2009. Evaluating Quaternary dating methods: Radiocarbon, U-series, luminescence, and amino acid racemization dates of a late Pleistocene emu egg. Quaternary Geochronology 4(2): 84–92, DOI 10.1016/j.quageo.2008.10.001. http://dx.doi.org/10.1016/j.quageo.2008.10.00110.1016/j.quageo.2008.10.001Search in Google Scholar

[38] Markgraf V, 1989. Palaeoclimates in central and south America since 18,000 BP based on pollen and lake-level records. Quaternary Science Reviews 8(1): 1–24, DOI 10.1016/0277-3791(89)90018-8. http://dx.doi.org/10.1016/0277-3791(89)90018-810.1016/0277-3791(89)90018-8Search in Google Scholar

[39] McCormac FG, Hogg AG, Blackwell PG, Buck CE, Higham TFG and Reimer PJ, 2004. SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46(3): 1087–1092. 10.1017/S0033822200033014Search in Google Scholar

[40] Mejdahl V, 1979. Thermoluminescence dating — beta-dose attenuation in quartz grains. Archaeometry 21(1): 61–72, DOI 10.1111/j.1475-4754.1979.tb00241.x. http://dx.doi.org/10.1111/j.1475-4754.1979.tb00241.x10.1111/j.1475-4754.1979.tb00241.xSearch in Google Scholar

[41] Mingorance F, 2006. Morfometría de la escarpa de falla histórica identificada al norte del cerro La Cal, zona de falla La Cal, Mendoza (Morphometry of the historic fault scarp identfied north of Cerro La Cal, La Cal Fault Zone, Mendoza). Revista de la Asociación Geológica Argentina 61(4): 620–638 (in Spanish; Abstract in English). Search in Google Scholar

[42] Murray AS and Roberts RG, 1997. Determining the burial time of single grains of quartz using optically stimulated luminescence. Earth and Planetary Science Letters 152(1–4): 163–180, DOI 10.1016/S0012-821X(97)00150-7. http://dx.doi.org/10.1016/S0012-821X(97)00150-710.1016/S0012-821X(97)00150-7Search in Google Scholar

[43] Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1): 57–73, DOI 10.1016/S1350-4487(99)00253-X. http://dx.doi.org/10.1016/S1350-4487(99)00253-X10.1016/S1350-4487(99)00253-XSearch in Google Scholar

[44] Murray AS and Olley JM, 2002. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status re-view. Geochronometria 21: 1–16. Search in Google Scholar

[45] Murray AS and Wintle AG, 2003.The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37(4–5): 377–381, DOI 10.1016/S1350-4487(03)00053-2. http://dx.doi.org/10.1016/S1350-4487(03)00053-210.1016/S1350-4487(03)00053-2Search in Google Scholar

[46] Niedermann S, 2002. Cosmic-Ray-Produced Noble Gases in Terrestrial Rocks: Dating Tools for Surface Processes. Reviews in Mineralogy and Geochemistry 47: 731–784. http://dx.doi.org/10.2138/rmg.2002.47.1610.2138/rmg.2002.47.16Search in Google Scholar

[47] Nissen E, Walker RT, Bayasgalan A, Carter A, Fattahi M, Molor E, Schnabel C, West AJ and Xu S, 2009. The late Quaternary slip-rate of the Har-Us-Nuur fault (Mongolian Altai) from cosmogenic 10Be and luminescence dating. Earth and Planetary Science Letters 286(3–4): 467–478, DOI 10.1016/j.epsl.2009.06.048. http://dx.doi.org/10.1016/j.epsl.2009.06.04810.1016/j.epsl.2009.06.048Search in Google Scholar

[48] Olgiati S and Ramos VA, 2003. Neotectónica Cuarternaria en el Anticlinal Borbollón, Provincia de Mendoza — Argentina (Quaternary neotectonics in the Borbollón anticline, Mendoza province — Argentina). 10° Congreso Geológico Chileno 11pp. (in Spanish). Search in Google Scholar

[49] Olley JM, Murray AS and Roberts RG, 1996. The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quaternary Science Reviews 15(7): 751–760, DOI 10.1016/0277-3791(96)00026-1. http://dx.doi.org/10.1016/0277-3791(96)00026-110.1016/0277-3791(96)00026-1Search in Google Scholar

[50] Olley JM, Caitcheon GG and Roberts RG, 1999. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence. Radiation Measurements 30(2): 207–217, DOI 10.1016/S1350-4487(99)00040-2. http://dx.doi.org/10.1016/S1350-4487(99)00040-210.1016/S1350-4487(99)00040-2Search in Google Scholar

[51] Owen LA, Bright J, Finkel RC, Jaiswal MK, Kaufman DS, Mahan S, Radtke U, Schneider JS, Sharp W, Singhvi AK and Warren CN, 2007. Numerical dating of a Late Quaternary spit-shoreline complex at the northern end of Silver Lake playa, Mojave Desert, California: A comparison of the applicability of radiocarbon, luminescence, terrestrial cosmogenic nuclide, electron spin resonance, U-series and amino acid racemization methods. Quaternary International 166(1): 87–110, DOI 10.1016/j.quaint.2007.01.001. http://dx.doi.org/10.1016/j.quaint.2007.01.00110.1016/j.quaint.2007.01.001Search in Google Scholar

[52] Porat N, Wintle AG, Amit R and Enzel Y, 1996. Late Quaternary Earthquake Chronology from Luminescence Dating of Colluvial and Alluvial Deposits of the Arava Valley, Israel. Quaternary Research 46(2): 107–117, DOI 10.1006/qres.1996.0051. http://dx.doi.org/10.1006/qres.1996.005110.1006/qres.1996.0051Search in Google Scholar

[53] Porat N, Duller GAT, Amit R, Zilberman E and Enzel Y, 2009. Recent faulting in the southern Arava, Dead Sea Transform: Evidence from single grain luminescence dating. Quaternary International 199(1–2): 34–44, DOI 10.1016/j.quaint.2007.08.039. http://dx.doi.org/10.1016/j.quaint.2007.08.03910.1016/j.quaint.2007.08.039Search in Google Scholar

[54] Porat N, Amit R, Enzel Y, Zilberman E, Avni Y, Ginat H and Gluck D, 2010. Abandonment ages of alluvial landforms in the hyperarid Negev determined by luminescence dating. Journal of Arid Environments 74(7): 861–869, DOI 10.1016/j.jaridenv.2009.10.018. http://dx.doi.org/10.1016/j.jaridenv.2009.10.01810.1016/j.jaridenv.2009.10.018Search in Google Scholar

[55] Prescott JR and Stephan LG, 1982. The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. Latitude, altitude and depth dependence. PACT 6: 17–25. 10.1002/j.1834-4453.1982.tb00058.xSearch in Google Scholar

[56] Prescott JR and Hutton JT, 1988. Cosmic ray and gamma ray dosimetry for TL and ESR. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 14(1–2): 223–227, DOI 10.1016/1359-0189(88)90069-6. http://dx.doi.org/10.1016/1359-0189(88)90069-610.1016/1359-0189(88)90069-6Search in Google Scholar

[57] Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements 23(2–3): 497–500, DOI 10.1016/1350-4487(94)90086-8. http://dx.doi.org/10.1016/1350-4487(94)90086-810.1016/1350-4487(94)90086-8Search in Google Scholar

[58] Preusser F, Geyh MA and Schlüchter C, 2003. Timing of Late Pleistocene climate change in lowland Switzerland. Quaternary Science Reviews 22(14): 1435–1445, DOI 10.1016/s0277-3791(03)00127-6. http://dx.doi.org/10.1016/S0277-3791(03)00127-610.1016/S0277-3791(03)00127-6Search in Google Scholar

[59] Preusser F, Hajdas I and Ivy-Ochs S, 2008. Recent progress in Quaternary dating methods. Eiszeitalter und Gegenwart 57(1–2), E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart: 262pp. Search in Google Scholar

[60] Reimann T, Tsukamoto S, Naumann M and Frechen M, 2011. The potential of using K-rich feldspars for optical dating of young coastal sediments — a test case from Darss-Zingst peninsula (southern Baltic Sea coast). Quaternary Geochronology 6(2): 207–222, DOI 10.1016/j.quageo.2010.10.001. http://dx.doi.org/10.1016/j.quageo.2010.10.00110.1016/j.quageo.2010.10.001Search in Google Scholar

[61] Rittenour TM, 2008. Luminescence dating of fluvial deposits: applications to geomorphic, palaeoseismic and archaeological research. Boreas 37(4): 613–635, DOI 10.1111/j.1502-3885.2008.00056.x. http://dx.doi.org/10.1111/j.1502-3885.2008.00056.x10.1111/j.1502-3885.2008.00056.xSearch in Google Scholar

[62] Roberts RG, Galbraith RF, Olley JM, Yoshida H and Laslett GM, 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia, part 2, Results and implications. Archaeometry 41(2): 365–395, DOI 10.1111/j.1475-4754.1999.tb00988.x. http://dx.doi.org/10.1111/j.1475-4754.1999.tb00988.x10.1111/j.1475-4754.1999.tb00988.xSearch in Google Scholar

[63] Roberts HM and Wintle AG, 2001. Equivalent dose determinations for polymineralic fine-grains using the SAR protocol: application to a Holocene sequence of the Chinese Loess Plateau. Quaternary Science Reviews 20(5–9): 859–863, DOI 10.1016/S0277-3791(00)00051-2. http://dx.doi.org/10.1016/S0277-3791(00)00051-210.1016/S0277-3791(00)00051-2Search in Google Scholar

[64] Robinson RAJ, Spencer JQG, Strecker MR, Richter A and Alonso RN, 2005. Luminescence dating of alluvial fans in intramontane basins of NW Argentina. In: Harvey AM, Mather AE and Stokes M, eds, Alluvial Fans: Geomorphology, Sedimentology, Dynamics. Geological Society Special Publication, London: 153–168 pp. 10.1144/GSL.SP.2005.251.01.11Search in Google Scholar

[65] Rodnight H, 2008. How many equivalent dose values are needed to obtain a reproducible distribution? Ancient TL 26(1): 3–9. Search in Google Scholar

[66] Rodnight H, Duller GAT, Wintle AG and Tooth S, 2006. Assessing the reproducibility and accuracy of optical dating of fluvial deposits. Quaternary Geochronology 1(2): 109–120, DOI 10.1016/j.quageo.2006.05.017. http://dx.doi.org/10.1016/j.quageo.2006.05.01710.1016/j.quageo.2006.05.017Search in Google Scholar

[67] Salomon E, 2010. Paleoseismic investigations at the Cal thrust fault, Mendoza, Argentina. M.Sc. thesis, University of Münster, Mün-ster, Germany, 43 pp. Search in Google Scholar

[68] Sancho C, Peña JL, Rivelli F, Rhodes E and Muñoz A, 2008. Geomorphological evolution of the Tilcara alluvial fan (Jujuy Province, NW Argentina): Tectonic implications and palaeoenvironmental considerations. Journal of South American Earth Sciences 26(1): 68–77, DOI 10.1016/j.jsames.2008.03.005. http://dx.doi.org/10.1016/j.jsames.2008.03.00510.1016/j.jsames.2008.03.005Search in Google Scholar

[69] Schmidt S, Hetzel R, Kuhlmann J, Mingorance F and Ramos VA, 2011a. A note of caution on the use of boulders for exposure da-ting of depositional surfaces. Earth and Planetary Science Letters 302(1–2), 60–70, DOI 10.1016/j.epsl.2010.11.039. http://dx.doi.org/10.1016/j.epsl.2010.11.03910.1016/j.epsl.2010.11.039Search in Google Scholar

[70] Schmidt S, Hetzel R, Mingorance F and Ramos VA, 2011b. Coseismic displacements and Holocene slip rates for two active thrust faults at the mountain front of the Andean Precordillera (∼33°S). Tecton-ics 30, TC5011, DOI 10.1029/2011TC002932. http://dx.doi.org/10.1029/2011TC00293210.1029/2011TC002932Search in Google Scholar

[71] Sepúlveda E, 2001. Hoja Geológica 3369-II, Mendoza. Provincias de Mendoza y San Juan (Geological map 3369-II, Mendoza. Mendoza and San Juan province). Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Boletín 252, Buenos Aires: 55pp (in Spanish). Search in Google Scholar

[72] Siame LL, Bellier O, Sébrier M, Bourlès DL, Leturmy P, Perez M and Araujo M, 2002. Seismic hazard reappraisal from combined structural geology, geomorphology and cosmic ray exposure dating analyses: the Eastern Precordillera thrust system (NW Argentina). Geophysical Journal International 150(1): 241–260, DOI 10.1046/j.1365-246X.2002.01701.x. http://dx.doi.org/10.1046/j.1365-246X.2002.01701.x10.1046/j.1365-246X.2002.01701.xSearch in Google Scholar

[73] Sohn MF, Mahan SA, Knott JR and Bowman DD, 2007. Luminescence ages for alluvial-fan deposits in Southern Death Valley: Implications for climate-driven sedimentation along a tectonically active mountain front. Quaternary International 166(1): 49–60, DOI 10.1016/j.quaint.2007.01.002. http://dx.doi.org/10.1016/j.quaint.2007.01.00210.1016/j.quaint.2007.01.002Search in Google Scholar

[74] Stokes S, Bray HE and Blum MD, 2001. Optical resetting in large drainage basins: tests of zeroing assumptions using single-aliquot procedures. Quaternary Science Reviews 20(5–9): 879–885, DOI 10.1016/S0277-3791(00)00045-7. http://dx.doi.org/10.1016/S0277-3791(00)00045-710.1016/S0277-3791(00)00045-7Search in Google Scholar

[75] Stuiver M and Reimer PJ, 2011. CALIB Radiocarbon Calibration. http://radiocarbon.pa.qub.ac.uk/calib. (accessed May 2011). Search in Google Scholar

[76] Thomas PJ, Jain M, Juyal N and Singhvi AK, 2005. Comparison of single-grain and small-aliquot OSL dose estimates in <3000 years old river sediments from South India. Radiation Measurements 39(5): 457–469, DOI 10.1016/j.radmeas.2004.07.005. http://dx.doi.org/10.1016/j.radmeas.2004.07.00510.1016/j.radmeas.2004.07.005Search in Google Scholar

[77] Thomsen KJ, Jain M, Murray AS, Denby PM, Roy N and Bøtter-Jensen L, 2008. Minimizing feldspar OSL contamination in quartz UV-OSL using pulsed blue stimulation. Radiation Measurements 43(2–6): 752–757, DOI 10.1016/j.radmeas.2008.01.020. http://dx.doi.org/10.1016/j.radmeas.2008.01.02010.1016/j.radmeas.2008.01.020Search in Google Scholar

[78] Toms PS, King M, Zarate MA, Kemp RA and Foit FF, 2004. Geochemical characterization, correlation, and optical dating of tephra in alluvial sequences of central western Argentina. Quaternary Re-search 62(1): 60–75, DOI 10.1016/j.yqres.2004.05.005. 10.1016/j.yqres.2004.05.005Search in Google Scholar

[79] Vandenberghe D, Hossain SM, De Corte F and Van den haute P, 2003. Investigations on the origin of the equivalent dose distribution in a Dutch coversand. Radiation Measurements 37(4–5): 433–439, DOI 10.1016/s1350-4487(03)00051-9. http://dx.doi.org/10.1016/S1350-4487(03)00051-910.1016/S1350-4487(03)00051-9Search in Google Scholar

[80] Wallinga J, 2002. Optically stimulated luminescence dating of fluvial deposits: a review. Boreas 31(4): 303–322, DOI 10.1111/j.1502-3885.2002.tb01076.x. http://dx.doi.org/10.1080/03009480232094253610.1080/030094802320942536Search in Google Scholar

[81] Wallinga J, Murray AS and Bøtter-Jensen L, 2002. Measurement of the dose in quartz in the presence of feldspar contamination. Radiation Protection Dosimetry 101(1–4): 367–370. http://dx.doi.org/10.1093/oxfordjournals.rpd.a00600310.1093/oxfordjournals.rpd.a00600312382769Search in Google Scholar

[82] Walker M, 2005. Quaternary dating methods. John Wiley & Son Ltd, Chichester: 286pp. Search in Google Scholar

eISSN:
1897-1695
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Geosciences, other