Accès libre

Proposing new approaches for dating young volcanic eruptions by luminescence methods

À propos de cet article

Citez

[1] Banerjee D, Singhvi AK, Pande K, Gogte VD and Chandra BP, 1999. Towards a direct dating of fault gouges using luminescence dating techniques — Methodological aspects. Current Science 77(2): 256–268. Search in Google Scholar

[2] Bassinet C, Mercier N, Miallier D, Pilleyre T, Sanzelle S and Valladas H, 2006. Thermoluminescence of heated quartz grains: Intercomparisons between SAR and multiple-aliquot additive dose techniques. Radiation Measurements 41(7–8): 803–808, DOI 10.1016/j.radmeas.2006.04.013. http://dx.doi.org/10.1016/j.radmeas.2006.04.01310.1016/j.radmeas.2006.04.013Search in Google Scholar

[3] Berger GW, 1991. The use of glass for dating volcanic ash by thermoluminescence. Journal of Geophysical Research-Solid Earth 96(B12): 19705–19720, DOI 10.1029/91JB01899. http://dx.doi.org/10.1029/91JB0189910.1029/91JB01899Search in Google Scholar

[4] Berger GW and Huntley DJ, 1994. Tests for optically stimulated luminescence from tephra glass. Quaternary Science Reviews 13(5–7): 509–511, DOI 10.1016/0277-3791(94)90067-1. http://dx.doi.org/10.1016/0277-3791(94)90067-110.1016/0277-3791(94)90067-1Search in Google Scholar

[5] Cannon J, 1984. The one-dimensional heat equation. Addison-Wesley, Menlo Park: 483pp. http://dx.doi.org/10.1017/CBO978113908696710.1017/CBO9781139086967Search in Google Scholar

[6] Chandra U and Lokanathan S, 1982. A Mössbauer study of the effect of heat-treatment on biotite micas. Journal of Physics D — Applied Physics 15(11): 2331–2340. http://dx.doi.org/10.1088/0022-3727/15/11/02510.1088/0022-3727/15/11/025Search in Google Scholar

[7] Cho WJ, Kwon S and Choi JW, 2009. The thermal conductivity for granite with various water contents. Engineering Geology 107(3–4): 167–171, DOI 10.1016/j.enggeo.2009.05.012. http://dx.doi.org/10.1016/j.enggeo.2009.05.01210.1016/j.enggeo.2009.05.012Search in Google Scholar

[8] Fattahi M and Stokes S, 2000a. Extending the time range of luminescence dating using red TL (RTL) from volcanic quartz. Radiation Measurements 32(5–6): 479–485, DOI 10.1016/S1350-4487(00)00105-0. http://dx.doi.org/10.1016/S1350-4487(00)00105-010.1016/S1350-4487(00)00105-0Search in Google Scholar

[9] Fattahi M and Stokes S, 2000b. Red thermoluminescence (RTL) in volcanic quartz: development of a high sensitive detection system and some preliminary findings. Ancient TL 18(2): 35–44. Search in Google Scholar

[10] Fattahi M and Stokes S, 2003a. Dating volcanic and related sediments by luminescence methods: a review. Earth-Science Reviews 62(3—4): 229–264, DOI 10.1016/S0012-8252(02)00159-9. http://dx.doi.org/10.1016/S0012-8252(02)00159-910.1016/S0012-8252(02)00159-9Search in Google Scholar

[11] Fattahi M and Stokes S, 2003b. Photomultiplier and filter combinations for the detection of relatively long wavelength (> 600 nm) luminescence emissions from feldspar. Ancient TL 21(1): 25–34. Search in Google Scholar

[12] Faure G, 1986. Principles of isotope geology, 2nd edition. John Wiley and Sons, New York: 589pp. Search in Google Scholar

[13] Feng W and Ma H, 2004. Thermodynamic analysis and experiments of thermal decomposition for potassium feldspar at intermediate temperatures. Journal of the Chinese Ceramic Society 32(7): 789–799. Search in Google Scholar

[14] Fischer RV and Schmincke HU, 1984. Pyroclastic rocks. Springer Verlag, Berlin: 472pp. http://dx.doi.org/10.1007/978-3-642-74864-610.1007/978-3-642-74864-6Search in Google Scholar

[15] Flynn LP and Mouginis-Mark PJ, 1992. Cooling rate of an active Hawaiian lava flow from nighttime spectroradiometer measurements. Geophysical Research Letters 19(17): 1783–1786, DOI 10.1029/92GL01577. http://dx.doi.org/10.1029/92GL0157710.1029/92GL01577Search in Google Scholar

[16] Ganzawa Y, Furukawa H, Hashimoto T, Sanzelle S, Miallier D and Pilleyre T, 2005. Single grains dating of volcanic quartz from pyroclastic flows using red TL. Radiation Measurements 39(5): 479–487, DOI 10.1016/j.radmeas.2004.10.012. http://dx.doi.org/10.1016/j.radmeas.2004.10.01210.1016/j.radmeas.2004.10.012Search in Google Scholar

[17] Gottsmann J and Dingwell DB, 2002. The thermal history of a spatterfed lava flow: the 8-ka pantellerite flow of Mayor Island, New Zealand. Bulletin of Volcanology 64(6): 410–422, DOI 10.1007/s00445-002-0220-7. http://dx.doi.org/10.1007/s00445-002-0220-710.1007/s00445-002-0220-7Search in Google Scholar

[18] Guerin G and Valladas G, 1980. Thermo-luminescence dating of volcanic plagioclases. Nature 286(5774): 697–699, DOI 10.1038/286697a0. http://dx.doi.org/10.1038/286697a010.1038/286697a0Search in Google Scholar

[19] Guerin G and Petit RH, 1983. Thermo-luminescence dating of lava flows from Guadeloupe — Some Problems. Comptes Rendus de L’Academie des Sciences Serie II 296(23): 1791–1794. Search in Google Scholar

[20] Guerin G and Samper A, 2007. Aberrant thermoluminescence dates obtained from primary volcanic quartz. Radiation Measurements 42(9): 1453–1459, DOI 10.1016/j.radmeas.2007.03.006. http://dx.doi.org/10.1016/j.radmeas.2007.03.00610.1016/j.radmeas.2007.03.006Search in Google Scholar

[21] Guerin G and Gillot PY, 2007. New elements of chronology of’ Bas Vivarais’ Pleistocene volcanism (Ardèche, France) by thermoluminescence dating. Comptes Rendus Geoscience 339(1): 40–49, DOI 10.1016/j.crte.2006.10.005. http://dx.doi.org/10.1016/j.crte.2006.10.00510.1016/j.crte.2006.10.005Search in Google Scholar

[22] Jakobsson SP, 1972. On the consolidation and palagonitization of the tephra of the Surtsey volcanic island, Iceland. Surtsey Research Progress Report,VI: 121–128. Search in Google Scholar

[23] Kanemaki M, Ninagawa K, Yamamoto I, Nakagawa M, Wada T, Yamashita Y and Endo K, 1991. Red thermoluminescence of volcanic glass fractions from tephras. Nuclear Tracks and Radiation Measurements 18(1–2): 81–88, DOI 10.1016/1359-0189(91)90097-2. 10.1016/1359-0189(91)90097-2Search in Google Scholar

[24] Liritzis I, Michael C and Galloway RB, 1996. A significant Aegean volcanic eruption during the second millennium B.C. revealed by thermoluminescence dating. Geoarchaeology 11(4): 361–371, DOI 10.1002/(SICI)1520-6548(199607)11:4<361::AID-GEA4>3.0.CO;2-#. http://dx.doi.org/10.1002/(SICI)1520-6548(199607)11:4<361::AID-GEA4>3.0.CO;2-#Search in Google Scholar

[25] MacDonald GA, 1972. Volcanoes. Prentice-Hall, Englewood Cliffs NJ: 510pp. Search in Google Scholar

[26] Mauz B and Lang A, 2004. Removal of the feldspar-derived luminescence component from polymineral fine silt samples for optical dating applications: evaluation of chemical treatment protocols and quality control procedures. Ancient TL 22(1): 1–9. Search in Google Scholar

[27] Miallier D, Fain J, Montret M, Pilleyre T, Sanzelle S and Soumana S, 1991. Properties of the red TL peak of quartz relevant to thermo-luminescence dating. Nuclear Tracks and Radiation Measurements 18(1–2): 89–94, DOI 10.1016/1359-0189(91)90098-3. 10.1016/1359-0189(91)90098-3Search in Google Scholar

[28] Miallier D, Fain J, Sanzelle S, Pilleyre T, Montret M, Soumana S and Falgueres C, 1994a. Attempts at dating pumice deposits around 580-Ka by use of red TL and ESR of xenolithic quartz inclusions. Radiation Measurements 23(2–3): 399–404, DOI 10.1016/1350-4487(94)90070-1. http://dx.doi.org/10.1016/1350-4487(94)90070-110.1016/1350-4487(94)90070-1Search in Google Scholar

[29] Miallier D, Sanzelle S, Falgueres C, Fain J, Montret M, Pilleyre T, Soumana S, Laurent M, Camus G and Deherve AD, 1994b. Intercomparisons of red TL and ESR signals from heated quartz grains. Radiation Measurements 23(1): 143–153, DOI 10.1016/1350-4487(94)90031-0. http://dx.doi.org/10.1016/1350-4487(94)90031-010.1016/1350-4487(94)90031-0Search in Google Scholar

[30] Miallier D, Condomines M, Pilleyre T, Sanzelle S and Guittet J, 2004. Concordant thermoluminescence and U-238-Th-230 ages for a trachytic dome (Grand Sarcoui) from the Chaîne des Puys (French Massif Central). Quaternary Science Reviews 23(5–6): 709–715, DOI 10.1016/j.quascirev.2003.06.002. http://dx.doi.org/10.1016/j.quascirev.2003.06.00210.1016/j.quascirev.2003.06.002Search in Google Scholar

[31] Pilleyre T, Montret M, Fain J, Miallier D and Sanzelle S, 1992. Attempts at dating ancient volcanos using the red TL of quartz. Quaternary Science Reviews 11(1–2): 13–17, DOI 10.1016/0277-3791(92)90036-8. http://dx.doi.org/10.1016/0277-3791(92)90036-810.1016/0277-3791(92)90036-8Search in Google Scholar

[32] Porat N, Levi T and Weinberger R, 2007. Possible resetting of quartz OSL signals during earthquakes — Evidence from late Pleistocene injection dikes, Dead Sea basin, Israel. Quaternary Geochronology 2(1–4): 272–277, DOI 10.1016/j.quageo.2006.05.021. http://dx.doi.org/10.1016/j.quageo.2006.05.02110.1016/j.quageo.2006.05.021Search in Google Scholar

[33] Prescott JR, Robertson GB, Shoemaker C, Shoemaker EM and Wynn J, 2004. Luminescence dating of the Wabar meteorite craters, Saudi Arabia. Journal of Geophysical Research-Planets 109(E1): 1–8, DOI 10.1029/2003JE002136. 10.1029/2003JE002136Search in Google Scholar

[34] Preusser F, Degering D, Fuchs M, Hilgers A, Kadereit A, Klasen N, Krbetschek M, Richter D and Spencer QG, 2008. Luminescence dating: basics, methods and applications. E&G / Quaternary Science Journal, 57(1–2): 95–149, DOI 10.3285/eg.57.1-2.5. 10.3285/eg.57.1-2.5Search in Google Scholar

[35] Preusser F, Rufer D and Schreurs G, 2011. Direct dating of Quaternary phreatic maar eruptions by luminescence methods. Geology 39: 1135–1138, DOI 10.1130/G32345.1. http://dx.doi.org/10.1130/G32345.110.1130/G32345.1Search in Google Scholar

[36] Richter D and Krbetschek M, 2006. A new thermoluminescence dating technique for heated flint. Archaeometry 48(4): 695–705, DOI 10.1111/j.1475-4754.2006.00281.x. http://dx.doi.org/10.1111/j.1475-4754.2006.00281.x10.1111/j.1475-4754.2006.00281.xSearch in Google Scholar

[37] Rittmann A, 1981. Vulkane und ihre Tätigkeit. Ferdinand Enke Verlag Stuttgart Search in Google Scholar

[38] Rufer D and Preusser F, 2009. Potential of autoradiography to detect spatially resolved radiation patterns in the context of trapped charge dating. Geochronometria 34: 1–13. DOI 10.2478/v10003-009-0014-4. http://dx.doi.org/10.2478/v10003-009-0014-410.2478/v10003-009-0014-4Search in Google Scholar

[39] Sanzelle S, Pilleyre T, Montret M, Fain J, Miallier D, Camus G, de Herve AD and Defleur A, 2000. Thermoluminescence dating: study of a possible chronological correlation between the maar of La Vestide-du-Pal and a tephra layer from La Baume-Moula-Guercy (Ardeche, France). Comptes Rendus de L’Academie des Sciences, Serie II, Fascicule a — Sciences de la Terre et des Planètes 330(8): 541–546. 10.1016/S1251-8050(00)00171-3Search in Google Scholar

[40] Schmincke HU, Park C and Harms E, 1999. Evolution and environmental impacts of the eruption of Laacher See Volcano (Germany) 12,900 a BP. Quaternary International 61(1): 61–72, DOI 10.1016/S1040-6182(99)00017-8. http://dx.doi.org/10.1016/S1040-6182(99)00017-810.1016/S1040-6182(99)00017-8Search in Google Scholar

[41] Schmincke HU, 2004. Volcanism. Springer Verlag, Berlin: 334pp. http://dx.doi.org/10.1007/978-3-642-18952-410.1007/978-3-642-18952-4Search in Google Scholar

[42] Schweitzer U, 1997. Thermolumineszenz-Datierbarkeit vulkanischer Gläser des Thera-Vulkans (Santorin-Archipel, Griechenland). (On the datability of volcanic glass of the Thera volcano (Santorin archipelago, Greece) using thermoluminescence). PhD-Thesis, University of Cologne, Cologne. Search in Google Scholar

[43] Sears DW, Ashworth JR, Broadbent CP and Bevan AWR, 1984. Studies of an artificially shock-loaded H-group chondrite. Geochimica Et Cosmochimica Acta 48(2): 343–360. http://dx.doi.org/10.1016/0016-7037(84)90255-210.1016/0016-7037(84)90255-2Search in Google Scholar

[44] Self S and Rampino MR, 1981. The 1883 eruption of Krakatau. Nature 294(5843): 699–704, DOI 10.1038/294699a0. http://dx.doi.org/10.1038/294699a010.1038/294699a0Search in Google Scholar

[45] Spooner NA, 1994. The Anomalous Fading of Infrared-Stimulated Luminescence from Feldspars. Radiation Measurements 23(2–3): 625–632, DOI 10.1016/1350-4487(94)90111-2. http://dx.doi.org/10.1016/1350-4487(94)90111-210.1016/1350-4487(94)90111-2Search in Google Scholar

[46] Stankowski WTJ, 2007. Luminescence dating as a diagnostic criterion for the recognition of Quaternary impact craters. Planetary and Space Science 55(7–8): 871–875, DOI 10.1016/j.pss.2006.11.006. http://dx.doi.org/10.1016/j.pss.2006.11.00610.1016/j.pss.2006.11.006Search in Google Scholar

[47] Steck A, 1968. Die alpidischen Strukturen in den Zentralen Aaregraniten des westlichen Aarmassivs (The alpine structures in the central Aar-granites of the western Aar-massif). Eclogae Geologicae Helvetiae 61, 19–48. Search in Google Scholar

[48] Sutton SR, 1985. Thermo-luminescence measurements on shock-metamorphosed sandstone and dolomite from Meteor Crater, Arizona. 1. Shock dependence of thermo-luminescence properties. Journal of Geophysical Research-Solid Earth and Planets 90(B5): 3683–3689, DOI 10.1029/JB090iB05p03683. http://dx.doi.org/10.1029/JB090iB05p0368310.1029/JB090iB05p03683Search in Google Scholar

[49] Thorarinsson S, 1967. The Surtsey eruption. Course of events during the year 1966. Surtsey Research Progress Report III: 84–90. Search in Google Scholar

[50] Tsukamoto S, Murray AS, Huot S, Watanuki T, Denby PM and Botter-Jensen L, 2007. Luminescence property of volcanic quartz and the use of red isothermal TL for dating tephras. Radiation Measurements 42(2): 190–197, DOI 10.1016/j.radmeas.2006.07.008. http://dx.doi.org/10.1016/j.radmeas.2006.07.00810.1016/j.radmeas.2006.07.008Search in Google Scholar

[51] Tsukamoto S, Duller GAT, Wintle AG and Frechen M, 2010. Optical dating of a Japanese marker tephra using plagioclase. Quaternary Geochronology 5: 274–278, DOI 10.1016/j.quageo.2009.02.002. http://dx.doi.org/10.1016/j.quageo.2009.02.00210.1016/j.quageo.2009.02.002Search in Google Scholar

[52] Tsukamoto S, Duller GAT, Wintle AG and Muhs D, 2011. Assessing the potential for luminescence dating of basalts. Quaternary Geochronology 6(1): 61–70, DOI 10.1016/j.quageo.2010.04.002. http://dx.doi.org/10.1016/j.quageo.2010.04.00210.1016/j.quageo.2010.04.002Search in Google Scholar

[53] Visocekas R and Guerin G, 2006. TL dating of feldspars using their farred emission to deal with anomalous fading. Radiation Measurements 41(7–8): 942–947, DOI 10.1016/j.radmeas.2006.04.023. http://dx.doi.org/10.1016/j.radmeas.2006.04.02310.1016/j.radmeas.2006.04.023Search in Google Scholar

[54] White JDL, 1996. Impure coolants and interaction dynamics of phreatomagmatic eruptions. Journal of Volcanology and Geothermal Research 74(3–4): 155–170, DOI 10.1016/S0377-0273(96)00061-3. http://dx.doi.org/10.1016/S0377-0273(96)00061-310.1016/S0377-0273(96)00061-3Search in Google Scholar

[55] Wintle AG, 1973. Anomalous fading of thermoluminescence in mineral samples. Nature 245(5421): 143–144, DOI 10.1038/245143a0. http://dx.doi.org/10.1038/245143a010.1038/245143a0Search in Google Scholar

[56] Yokoo A, Taniguchi H, Goto A and Oshima H, 2002. Energy and depth of Usu 2000 phreatic explosions. Geophysical Research Letters 29(24), 2195, DOI 10.1029/2002GL015928. http://dx.doi.org/10.1029/2002GL01592810.1029/2002GL015928Search in Google Scholar

[57] Zimanowski B, Frohlich G and Lorenz V, 1991. Quantitative experiments on phreatomagmatic explosions. Journal of Volcanology and Geothermal Research 48(3—4): 341–358, DOI 10.1016/0377-0273(91)90050-A. http://dx.doi.org/10.1016/0377-0273(91)90050-A10.1016/0377-0273(91)90050-ASearch in Google Scholar

[58] Zink AJC and Visocekas R, 1997. Datability of sanidine feldspars using the near-infrared TL emission. Radiation Measurements 27(2): 251–261, DOI 10.1016/S1350-4487(96)00141-2. http://dx.doi.org/10.1016/S1350-4487(96)00141-210.1016/S1350-4487(96)00141-2Search in Google Scholar

[59] Zöller L, Blanchard H and McCammon C, 2009. Can temperature assisted hydrostatic pressure reset the ambient TL of rocks? — A note on the TL of partially heated country rock from volcanic eruptions. Ancient TL 27(1): 15–23. Search in Google Scholar

eISSN:
1897-1695
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Geosciences, other