Accès libre

An assessment of the luminescence sensitivity of Australian quartz with respect to sediment history

Geochronometria's Cover Image
Geochronometria
Special Issue Title: Proceedings of the 2nd Asia Pacific Conference on Luminescence Dating, Ahmedabad, India, 2009. Part II Issue Editors: Andrzej Bluszcz, Silesian University of Technology, Gliwice, Poland. Andrzej.Bluszcz@polsl.pl Sheng-Hua Li, The University of Hong Kong, Hong Kong, China. shli@hku.hk Ashok Kumar Singhvi, Physical Research Laboratory, Ahmedabad, India. singhvi@prl.res.in
À propos de cet article

Citez

[1] Aitken MJ, 1985. Thermoluminescence dating. London, Academic Press: 359pp. Search in Google Scholar

[2] Aitken MJ, 1998. An introduction to optical dating: the dating of Quaternary sediments by the use of photon-stimulated luminescence. New York, Oxford University Press. Search in Google Scholar

[3] Bøtter-Jensen L, 1997. Luminescence techniques: instrumentation and methods. Radiation Measurements 27(5–6): 749–768, DOI 10.1016/S1350-4487(97)00206-0. http://dx.doi.org/10.1016/S1350-4487(97)00206-010.1016/S1350-4487(97)00206-0Search in Google Scholar

[4] Bøtter-Jensen L, Bulur E, Duller GAT and Murray AS, 2000. Advances in luminescence instrument systems. Radiation Measurements 32(5–6): 523–528, DOI 10.1016/S1350-4487(00)00039-1. http://dx.doi.org/10.1016/S1350-4487(00)00039-110.1016/S1350-4487(00)00039-1Search in Google Scholar

[5] Coventry RJ, 1976. Abandoned shorelines and the late Quaternary history of Lake George, New South Wales. Journal of the Geological Society of Australia 23: 249–273. 10.1080/00167617608728939Search in Google Scholar

[6] Duller G, 2008. Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37(4): 589–612, DOI 10.1111/j.1502-3885.2008.00051.x. http://dx.doi.org/10.1111/j.1502-3885.2008.00051.x10.1111/j.1502-3885.2008.00051.xSearch in Google Scholar

[7] Duller GAT, 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37(2): 161–165, DOI 10.1016/S1350-4487(02)00170-1. http://dx.doi.org/10.1016/S1350-4487(02)00170-110.1016/S1350-4487(02)00170-1Search in Google Scholar

[8] Fitzsimmons KE and Barrows TT, 2010. Holocene hydrologic variability in temperate southeastern Australia: An example from Lake George, New South Wales. The Holocene 20(4): 585–597, DOI: 10.1177/0959683609356589. http://dx.doi.org/10.1177/095968360935658910.1177/0959683609356589Search in Google Scholar

[9] Fitzsimmons KE, Magee JW and Amos K, 2009. Characterisation of aeolian sediments from the Strzelecki and Tirari Deserts, Australia: implications for reconstructing palaeoenvironmental conditions. Sedimentary Geology 218(1–4): 61–73, DOI 10.1016/j.sedgeo.2009.04.004. http://dx.doi.org/10.1016/j.sedgeo.2009.04.00410.1016/j.sedgeo.2009.04.004Search in Google Scholar

[10] Fitzsimmons KE, Rhodes EJ and Barrows TT, 2010. OSL dating of southeast Australian quartz: A preliminary assessment of luminescence characteristics and behaviour. Quaternary Geochronology 5: 91–95, DOI 10.1016/j.quageo.2009.02.009. http://dx.doi.org/10.1016/j.quageo.2009.02.00910.1016/j.quageo.2009.02.009Search in Google Scholar

[11] Hashimoto T, Katayama H, Sakaue H, Hase H, Arimura T and Ojima T, 1997. Dependence of some radiation-induced phenomena from natural quartz on hydroxyl-impurity contents. Radiation Measurements 27(2): 243–250, DOI 10.1016/S1350-4487(96)00115-1. http://dx.doi.org/10.1016/S1350-4487(96)00115-110.1016/S1350-4487(96)00115-1Search in Google Scholar

[12] Hülle D, Hilgers A, Radtke U, Stolz C, Hempelmann N, Grunert J, Felauer T and Lehmkuhl F, 2010. OSL dating of sediments from the Gobi desert, Southern Mongolia. Quaternary Geochronology 5(2–3): 107–113, DOI 10.1016/j.quageo.2009.06.002. http://dx.doi.org/10.1016/j.quageo.2009.06.00210.1016/j.quageo.2009.06.002Search in Google Scholar

[13] Jacobs Z, Duller GAT and Wintle AG, 2003. Optical dating of dune sand from Blombos Cave, South Africa: II—single grain data. Journal of Human Evolution 44(5): 613–625, DOI 10.1016/S0047-2484(03)00049-6. http://dx.doi.org/10.1016/S0047-2484(03)00049-610.1016/S0047-2484(03)00049-6Search in Google Scholar

[14] Li S-H and Wintle AG, 1991. Sensitivity changes of luminescence signals from colluvial sediments after different bleaching procedures. Ancient TL 9: 50–54. Search in Google Scholar

[15] Li S-H and Wintle AG, 1992. Luminescence sensitivity change due to bleaching of sediments. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 20(4): 567–573, DOI 10.1016/1359-0189(92)90006-H. http://dx.doi.org/10.1016/1359-0189(92)90006-H10.1016/1359-0189(92)90006-HSearch in Google Scholar

[16] Li S-H, Chen YY, Li B, Sun JM and Yang LR, 2007. OSL dating of sediments from deserts in northern China. Quaternary Geochronology 2(1–4): 23–28, DOI 10.1016/j.quageo.2006.05.034. http://dx.doi.org/10.1016/j.quageo.2006.05.03410.1016/j.quageo.2006.05.034Search in Google Scholar

[17] Lomax J, Hilgers A, Twidale CR, Bourne JA and Radtke U, 2007. Treatment of broad palaeodose distributions in OSL dating of dune sands from the western Murray Basin, South Australia. Quaternary Geochronology 2(1–4): 51–56, DOI 10.1016/j.quageo.2006.05.015. http://dx.doi.org/10.1016/j.quageo.2006.05.01510.1016/j.quageo.2006.05.015Search in Google Scholar

[18] McKeever SWS, 1991. Mechanisms of thermoluminescence production: some problems and a few answers? Nuclear Tracks and Radiation Measurements 18(1–2): 5–12, DOI 10.1016/1359-0189(91)90085-V. 10.1016/1359-0189(91)90085-VSearch in Google Scholar

[19] Mortlock A and Price D, 1984. Unusual features of the thermoluminescence signal profile for sediments from beneath Lake George, New South Wales. Ancient TL 2: 10–13. Search in Google Scholar

[20] Murray AS and Roberts RG, 1998. Measurement of the equivalent dose in quartz using a regenerative-dose single-aliquot protocol. Radiation Measurements 29(5): 503–515, DOI 10.1016/S1350-4487(98)00044-4. http://dx.doi.org/10.1016/S1350-4487(98)00044-410.1016/S1350-4487(98)00044-4Search in Google Scholar

[21] Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1): 57–73, DOI 10.1016/S1350-4487(99)00253-X. http://dx.doi.org/10.1016/S1350-4487(99)00253-X10.1016/S1350-4487(99)00253-XSearch in Google Scholar

[22] Murray AS and Wintle AG, 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37(4–5): 377–381, DOI 10.1016/S1350-4487(03)00053-2. http://dx.doi.org/10.1016/S1350-4487(03)00053-210.1016/S1350-4487(03)00053-2Search in Google Scholar

[23] Pell SD, Chivas AR and Williams IS, 2001. The Mallee Dunefield: development and sand provenance. Journal of Arid Environments 48(2): 149–170, DOI 10.1006/jare.2000.0751. http://dx.doi.org/10.1006/jare.2000.075110.1006/jare.2000.0751Search in Google Scholar

[24] Pietsch TJ, 2009. Optically stimulated luminescence dating of young (<500 years old) sediments: Testing estimates of burial dose. Quaternary Geochronology 4(5): 406–422, DOI 10.1016/j.quageo.2009.05.013. http://dx.doi.org/10.1016/j.quageo.2009.05.01310.1016/j.quageo.2009.05.013Search in Google Scholar

[25] Pietsch TJ, Olley JM and Nanson GC, 2008. Fluvial transport as a natural luminescence sensitiser of quartz. Quaternary Geochronology 3(4): 365–376, DOI 10.1016/j.quageo.2007.12.005. http://dx.doi.org/10.1016/j.quageo.2007.12.00510.1016/j.quageo.2007.12.005Search in Google Scholar

[26] Preusser F, Ramseyer K and Schlüchter C, 2006. Characterisation of low OSL intensity quartz from the New Zealand Alps. Radiation Measurements 41(7–8): 871–877, DOI 10.1016/j.radmeas.2006.04.019. http://dx.doi.org/10.1016/j.radmeas.2006.04.01910.1016/j.radmeas.2006.04.019Search in Google Scholar

[27] Rhodes EJ and Bailey RM, 1997. The effect of thermal transfer on the zeroing of the luminescence of quartz from recent glaciofluvial sediments. Quaternary Geochronology 16(3–5): 291–298, DOI 10.1016/S0277-3791(96)00100-X. 10.1016/S0277-3791(96)00100-XSearch in Google Scholar

[28] Richards SW and Collins WJ, 2002. The Cooma metamorphic complex, a low-P, high-T (LPHT) regional aureole beneath the Murrumbidgee Batholith. Journal of Metamorphic Geology 20: 119–134. http://dx.doi.org/10.1046/j.0263-4929.2001.00360.x10.1046/j.0263-4929.2001.00360.xSearch in Google Scholar

[29] Singarayer JS and Bailey RM, 2003. Further investigations of the quartz optically stimulated luminescence components using linear modulation. Radiation Measurements 37(4–5): 451–458, DOI 10.1016/S1350-4487(03)00062-3. http://dx.doi.org/10.1016/S1350-4487(03)00062-310.1016/S1350-4487(03)00062-3Search in Google Scholar

[30] Strusz DL, 1971. Canberra, ACT and NSW — 1:250 000 Geological Series — Explanatory notes. Canberra, Australian Government Public Service. Search in Google Scholar

[31] Timar A, Vandenberghe D, Panaiotu EC, Panaiotu CG, Necula C, Cosma C and van den Haute P, 2010. Optical dating of Romanian loess using fine-grained quartz. Quaternary Geochronology 5(2–3): 143–148, DOI 10.1016/j.quageo.2009.03.003. http://dx.doi.org/10.1016/j.quageo.2009.03.00310.1016/j.quageo.2009.03.003Search in Google Scholar

[32] Vartanian E, Guibert P, Roque C, Bechtel F and Schvoerer M, 2000. Changes in OSL properties of quartz by preheating: an interpretation. Radiation Measurements 32(5–6): 647–652, DOI 10.1016/S1350-4487(00)00109-8. http://dx.doi.org/10.1016/S1350-4487(00)00109-810.1016/S1350-4487(00)00109-8Search in Google Scholar

[33] Wang XL, Wintle AG and Lu YC, 2006. Thermally transferred luminescence in fine-grained quartz from Chinese loess: Basic observations. Radiation Measurements 41(6): 649–658, DOI 10.1016/j.radmeas.2006.01.001. http://dx.doi.org/10.1016/j.radmeas.2006.01.00110.1016/j.radmeas.2006.01.001Search in Google Scholar

[34] Westaway KE, 2009. The red, white and blue of quartz luminescence: A comparison of De values derived for sediments from Australia and Indonesia using thermoluminescence and optically stimulated luminescence emissions. Radiation Measurements 44(5–6): 462–466, DOI 10.1016/j.radmeas.2009.06.001. http://dx.doi.org/10.1016/j.radmeas.2009.06.00110.1016/j.radmeas.2009.06.001Search in Google Scholar

[35] Wintle AG, 1985. Sensitization of TL signal by exposure to light. Ancient TL 3: 16–21. Search in Google Scholar

[36] Wintle AG and Murray AS, 1999. Luminescence sensitivity changes in quartz. Radiation Measurements 30(1): 107–118, DOI 10.1016/S1350-4487(98)00096-1. http://dx.doi.org/10.1016/S1350-4487(98)00096-110.1016/S1350-4487(98)00096-1Search in Google Scholar

[37] Wintle AG and Murray AS, 2000. Quartz OSL: Effects of thermal treatment and their relevance to laboratory dating procedures. Radiation Measurements 32(5–6): 387–400, DOI 10.1016/S1350-4487(00)00057-3. http://dx.doi.org/10.1016/S1350-4487(00)00057-310.1016/S1350-4487(00)00057-3Search in Google Scholar

[38] Wintle AG and Murray AS, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41(4): 369–391, DOI 10.1016/j.radmeas.2005.11.001. http://dx.doi.org/10.1016/j.radmeas.2005.11.00110.1016/j.radmeas.2005.11.001Search in Google Scholar

[39] Zheng CX, Zhou LP and Qin JT, 2009. Difference in luminescence sensitivity of coarse-grained quartz from deserts of northern China. Radiation Measurements 44(5–6): 534–537, DOI 10.1016/j.radmeas.2009.02.013. http://dx.doi.org/10.1016/j.radmeas.2009.02.01310.1016/j.radmeas.2009.02.013Search in Google Scholar

[40] Zimmerman J, 1971. The radiation-induced increase of thermoluminescence sensitivity of fired quartz. Journal of Physics C: Solid state physics 4: 3277–3291. http://dx.doi.org/10.1088/0022-3719/4/18/03310.1088/0022-3719/4/18/033Search in Google Scholar

eISSN:
1897-1695
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Geosciences, other