This work is licensed under the Creative Commons Attribution 4.0 International License.
Silvestre G., Fernández B., Bonmatí A. Significance of anaerobic digestion as a source of clean energy in wastewater treatment plants. Energy Conversion and Management 2015:101:255–262. https://doi.org/10.1016/j.enconman.2015.05.033Search in Google Scholar
E. B. Association, EBA Statistical Report, The European Biogas Association, 2017. [Online]. [Accessed 15.02.2025]. Available: http://european-biogas.eu/2017/12/14/eba-statistical-report-2017-published-soon/Search in Google Scholar
Gao J., Li J., Wachemo A. C., Yuan H., Zuo X., Li X. Mass conversion pathway during anaerobic digestion of wheat straw. RSC Advances 2020:46:27720–27727. https://doi.org/10.1039/D0RA02441DSearch in Google Scholar
Malhotra M., Aboudi K., Pisharody L., Singh A., Banu J. R., Bhatia S. K., Varjani S., Kumar S., González-Fernández C., Kumar S., Singh R., Tyagi V. K. Biorefinery of anaerobic digestate in a circular bioeconomy: Opportunities, challenges and perspectives. Renewable and Sustainable Energy Reviews 2022:166:112642. https://doi.org/10.1016/j.rser.2022.112642Search in Google Scholar
Langone M., Basso D. Process Waters from Hydrothermal Carbonization of Sludge: Characteristics and Possible Valorization Pathways. International Journal of Environmenatal Research and Public Health 2020:17(8):1–31. https://doi.org/10.3390/ijerph17186618Search in Google Scholar
Ali A. M., Nesse A. S., Eich-Greatorex S., Sogn T. A., Aanrud S. G., Aasen Bunæs J. A., Lyche J. L., Kallenborn R. Organic contaminants of emerging concern in Norwegian digestates from biogas production. Environmental Science: Process & Impacts 2019:9:1498–1508. https://doi.org/10.1039/C9EM00175ASearch in Google Scholar
Petrovič A., Vohl S., Cenčič Predikaka T., Bedoić R., Simonič M., Ban I., Čuček L. Pyrolysis of Solid Digestate from Sewage Sludge and Lignocellulosic Biomass: Kinetic and Thermodynamic Analysis, Characterization of Biochar. Sustainability 2021:13(17):9642. https://doi.org/10.3390/su13179642Search in Google Scholar
Freda C., Nanna F., Villone A., Barisano D., Brandani S., Cornacchia G. Air gasification of digestate and its cogasification with residual biomass in a pilot scale rotary kiln. International Journal of Energy and Environmental Engineering 2019:10:335–346. https://doi.org/10.1007/s40095-019-0310-3Search in Google Scholar
Vigants E., Vigants G., Veidenbergs I., Lauka D., Klavina K., Blumberga D. Analysis of Energy Consumption for Biomass Drying Process. Environment. Technology. Resources. Proceedings of the 10th International Scientific and Practical Conference 2015:2:317–322. https://doi.org/10.17770/etr2015vol2.625Search in Google Scholar
Zhang Y., Cao B., Ren R., Shi Y., Xiong J., Zhang W., Wang D. Correlation and mechanism of extracellular polymeric substances (EPS) on the effect of sewage sludge electro-dewatering. Science of The Total Environment 2021:801:149753. https://doi.org/10.1016/j.scitotenv.2021.149753Search in Google Scholar
Christensen M. L., Keiding K., Nielsen P. H., Jørgensen M. K. Dewatering in biological wastewater treatment: A review. Water Research 2015:82:14–24. https://doi.org/10.1016/j.watres.2015.04.019Search in Google Scholar
Gahlot P., Tyagi V. K., Balasundaram G., Atabani A. E., Suthar S., Kazmi A. A., Štěpanec L., Juchelková D., Kumar A. Principles and potential of thermal hydrolysis of sewage sludge to enhance anaerobic digestion. Environmental Research 2022:214(2):113857. https://doi.org/10.1016/j.envres.2022.113856Search in Google Scholar
Malhotra M., Garg A. Performance of non-catalytic thermal hydrolysis and wet oxidation for sewage sludge degradation under moderate operating conditions. Journal of Environmental Management 2019:238:72–83. https://doi.org/10.1016/j.jenvman.2019.02.094Search in Google Scholar
Mumtaz H., Sobek S., Werle S., Sajdak M., Muzyka R. Hydrothermal treatment of plastic waste within a circular economy perspective, Sustainable Chemistry and Pharmacy 2023:32:100991. https://doi.org/10.1016/j.scp.2023.100991Search in Google Scholar
Wang L. F., Qian C., Jiang J. K., Ye X. D., Yu H. Q. Response of extracellular polymeric substances to thermal treatment in sludge dewatering process. Environmental Pollution 2017:231(2):1388–1392. https://doi.org/10.1016/j.envpol.2017.08.119Search in Google Scholar
Xiao H., Guo Y., Liang X., Qi C. One-step synthesis of novel biacidic carbon via hydrothermal carbonization. Journal Solid State Chemistry 2010:183(7):1721–1725. https://doi.org/10.1016/j.jssc.2010.05.020Search in Google Scholar
Malhotra M., Garg A. Hydrothermal carbonization of centrifuged sewage sludge: Determination of resource recovery from liquid fraction and thermal behaviour of hydrochar. Waste Management 2020:117:114–123. https://doi.org/10.1016/j.wasman.2020.07.026Search in Google Scholar
Kim D., Lee K., Park K. Y. Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 2014:130:120–125. https://doi.org/10.1016/j.fuel.2014.04.030Search in Google Scholar
Tasca A. L., Stefanelli E., Raspolli Galletti A. M., Gori R., Mannarino G., Vitolo S., Puccini M. Hydrothermal Carbonization of Sewage Sludge: Analysis of Process Severity and Solid Content. Chemical Engineering & Technology 2020:43(12):2382–2392. https://doi.org/10.1002/ceat.202000095Search in Google Scholar
Akiya N., Savage P. E. Roles of water for chemical reactions in high-temperature water. Chemical Reviews 2002:102(8):2725–2750. https://doi.org/10.1021/cr000668wSearch in Google Scholar
Gupta D., Mahajani S. M., Garg A. Effect of hydrothermal carbonization as pretreatment on energy recovery from food and paper wastes. Bioresource Technology 2019:285:121329. https://doi.org/10.1016/j.biortech.2019.121329Search in Google Scholar
Olszewski M. P., Arauzo P. J., Wądrzyk M., Kruse A. Py-GC-MS of hydrochars produced from brewer’s spent grains. Journal of Analytical and Applied Pyrolysis 2019:140:255–263. https://doi.org/10.1016/j.jaap.2019.04.002Search in Google Scholar
Czerwińska K., Marszałek A., Kudlek E., Śliz M., Dudziak M., Wilk M. The treatment of post-processing liquid from the hydrothermal carbonization of sewage sludge. Science of Total Environment 2023:885:163858. https://doi.org/10.1016/j.scitotenv.2023.163858Search in Google Scholar
García M., Urrea J. L., Collado S., Oulego P., Díaz M. Protein recovery from solubilized sludge by hydrothermal treatments. Waste Management 2017:67:278–287. https://doi.org/10.1016/j.wasman.2017.05.051Search in Google Scholar
Malhotra M., Garg A. Proteins Recovery from Hydrothermally Treated Diluted and Centrifuged Sewage Sludge Samples. Journal of Hazardous, Toxic, and Radioactive Waste 2018:24(4):1–8. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000542Search in Google Scholar
Gupta D., Mahajani S. M., Garg A. Investigation on hydrochar and macromolecules recovery opportunities from food waste after hydrothermal carbonization. Science of Total Environment 2020:749:142294. https://doi.org/10.1016/j.scitotenv.2020.142294Search in Google Scholar
Malhotra M., Garg A. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge. Frontiers of Environmental Science & Engineering 2021:15:13. https://doi.org/10.1007/s11783-020-1305-2Search in Google Scholar
McGaughy K., Toufiq Reza M. Hydrothermal carbonization of food waste: simplified process simulation model based on experimental results. Biomass Conversion and Biorefinery 2018:8:283–292. https://doi.org/10.1007/s13399-017-0276-4Search in Google Scholar
Kim D., Lee K., Park K. Y. Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 2014:130:120-125. https://doi.org/10.1016/j.fuel.2014.04.030Search in Google Scholar
Lin Y., Ge Y., Xiao H., He Q., Wang W., Chen B. Investigation of hydrothermal co-carbonization of waste textile with waste wood, waste paper and waste food from typical municipal solid wastes. Energy 2020:210:118606. https://doi.org/10.1016/j.energy.2020.118606Search in Google Scholar
C Deng., Kang X., Lin R., Murphy J. D. Microwave assisted low-temperature hydrothermal treatment of solid anaerobic digestate for optimising hydrochar and energy recovery. Chemical Engineering Journal 2020:395:124999. https://doi.org/10.1016/j.cej.2020.124999Search in Google Scholar
Aragón-Briceño C., Ross A. B., Camargo-Valero M. A. Evaluation and comparison of product yields and biomethane potential in sewage digestate following hydrothermal treatment. Applied Energy 2017:208:1357–1369. https://doi.org/10.1016/j.apenergy.2017.09.019Search in Google Scholar
S Sobek., Tran Q. K., Junga R., Werle S. Hydrothermal carbonization of the waste straw: A study of the biomass transient heating behavior and solid products combustion kinetics. Fuel 2022:314:122725. https://doi.org/10.1016/j.fuel.2021.122725Search in Google Scholar
Mlonka-Mędrala A., Sieradzka M., Magdziarz A. Thermal upgrading of hydrochar from anaerobic digestion of municipal solid waste organic fraction. Fuel 2022:324:124435. (2022). https://doi.org/10.1016/j.fuel.2022.124435Search in Google Scholar
Cao Z., Jung D., Olszewski M. P., Arauzo P. J., Kruse A. Hydrothermal carbonization of biogas digestate: Effect of digestate origin and process conditions. Waste Management 2019:100:138–150. https://doi.org/10.1016/j.wasman.2019.09.009Search in Google Scholar
Zhai Y., Peng C., Xu B., Wang T., Li C., Zeng G., Zhu Y. Hydrothermal carbonisation of sewage sludge for char production with different waste biomass: Effects of reaction temperature and energy recycling. Energy 2017:127:167–174. https://doi.org/10.1016/j.energy.2017.03.116Search in Google Scholar
Peng C., Zhai Y., Zhu Y., Xu B., Wang T., Li C., Zeng G. Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics. Fuel 2016:176:110–118. https://doi.org/10.1016/j.fuel.2016.02.068Search in Google Scholar
Silva R. D. V. K., Lei Z., Shimizu K., Zhang Z. Hydrothermal treatment of sewage sludge to produce solid biofuel: Focus on fuel characteristics. Bioresource Technology Reports 2020:11:100453. https://doi.org/10.1016/j.biteb.2020.100453Search in Google Scholar
APHA, Standard Methods for the Examination of Water and Wastewater, 22nd ed., American Public Health Association Washington, 2012.Search in Google Scholar
Standard Test Method for Hydraulic Conductivity Compatibility Testing of Soils with Aqueous Solutions that may Alter Hydraulic Conductivity. https://store.astm.org/d7100-11r20.htmlSearch in Google Scholar
Standard Test Method for Moisture in the Analysis Sample of Coal and Coke. ASTM. https://doi.org/10.1520/D3175-07Search in Google Scholar
Parikh J., Channiwala S. A., Ghosal G. K. A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel 2007:86(12–13):1710–1719. https://doi.org/10.1016/j.fuel.2006.12.029Search in Google Scholar
Ahmed M., G Andreottola., Elagroudy S., Negm M. S., Fiori L. Coupling hydrothermal carbonization and anaerobic digestion for sewage digestate management: Influence of hydrothermal treatment time on dewaterability and biomethane production. Journal of Environmental Management 2021:281:111910. https://doi.org/10.1016/j.jenvman.2020.111910Search in Google Scholar
Islam M. T., Chambers C., Klinger J. L., Reza M. T. Blending hydrochar improves hydrophobic properties of corn stover pellets. Biomass Conversion and Biorefinery 2022. https://doi.org/10.1007/s13399-022-02521-1Search in Google Scholar
Bach Q. V., Tran K. Q., Skreiberg Ø. Hydrothermal pretreatment of fresh forest residues: Effects of feedstock predrying. Biomass and Bioenergy 2016:85:76–83. https://doi.org/10.1016/j.biombioe.2015.11.019Search in Google Scholar
Zhang J.-h., Lin Q.-m., Zhao X.-r. The Hydrochar Characters of Municipal Sewage Sludge Under Different Hydrothermal Temperatures and Durations. Journal of Integrative Agriculture 2014:13(3):471–482. https://doi.org/10.1016/S2095-3119(13)60702-9Search in Google Scholar
Skinner S. J., Studer L. J., Dixon D. R., Hillis P., Rees C. A., Wall R. C., Cavalida R. G., Usher S. P., Stickland A. D., Scales P. J. Quantification of wastewater sludge dewatering. Water Research 2015:82:2–13. https://doi.org/10.1016/j.watres.2015.04.045Search in Google Scholar
Sapkaite I., Barrado E., Fdz-Polanco F., Pérez-Elvira S. I. Optimization of a thermal hydrolysis process for sludge pre-treatment. Journal of Environmental Management 2017:192:25–30. https://doi.org/10.1016/j.jenvman.2017.01.043Search in Google Scholar