1. bookVolume 26 (2022): Edition 1 (January 2022)
Détails du magazine
License
Format
Magazine
eISSN
2255-8837
Première parution
26 Mar 2010
Périodicité
2 fois par an
Langues
Anglais
access type Accès libre

Mitigating Overvoltage in Power Grids with Photovoltaic Systems by Energy Storage

Publié en ligne: 07 Jul 2022
Volume & Edition: Volume 26 (2022) - Edition 1 (January 2022)
Pages: 470 - 483
Détails du magazine
License
Format
Magazine
eISSN
2255-8837
Première parution
26 Mar 2010
Périodicité
2 fois par an
Langues
Anglais
Abstract

The rise of photovoltaic (PV) penetration is contributing to the increasing incidence of overvoltage detection in the electrical grid during times of high-power generation. Overvoltage can cause disturbances or (partial) failures in the electrical supply network, since the components used are designed for a certain voltage band. One option to counteract too high voltage levels and thus ensure power quality, grid stability and resilience is the absorption of active power by means of a battery energy storage system (BESS). In this paper, we first built a suitable simulation setup for a typical European network section, including a large-scale PV system connected to the 10 kV level and a BESS model. A suitable charging and discharging algorithm for the BESS with the aim to realize peak shaving for the grid voltage was developed and implemented. Simulations, performed in MATLAB/Simulink®, show the dependence of the battery capacity and power on the grid-serving effect of BESS. By determining appropriate values for these two factors a significant reduction of the voltage level could be achieved.

Keywords

[1] European Commission. Stepping up Europe’s 2030 Climate Ambition – Investigating in a Climate-Neutral Future for the Benefit of our People. Brussels, 2020. Search in Google Scholar

[2] Katiraei F., Sun C., Enayati B. No Inverter Left Behind. IEEE Power & Energy Magazine, 2015. Search in Google Scholar

[3] Mateo C., Frias P., Cossent R., Sonvilla P., Barth B. Overcoming the barriers that hamper a large-scale integration of solar photovoltaic power generation in European distribution grids. Solar Energy 2017:153:574–583. https://doi.org/10.1016/j.solener.2017.06.008 Search in Google Scholar

[4] Kato T., Imanaka M., Kurimoto M., Sugimoto S. Impact of Power Output Curtailment Control Photovoltaic Power Generation on Grid Frequency. IFAC-PapersOnLine 2020:53(2):12157–12162. https://doi.org/10.1016/j.ifacol.2020.12.987 Search in Google Scholar

[5] Zeb K., Islam S. U., Khan I., Uddin W., Ishfaq M., Busarello T. D. C., Muyeen S., Ahmad I., Kim H. Faults and Fault Ride Through strategies for grid-connected photovoltaic system: A comprehensive review. Renewable and Sustainable Energy Reviews 2022:158:112125. https://doi.org/10.1016/j.rser.2022.112125 Search in Google Scholar

[6] Al-Shetwi A. Q., Sujod M. Z., Blaabjerg F., Yang Y. Fault ride-through control of grid-connected photovoltaic power plants: A review. Solar Energy 2019:180:340–350. https://doi.org/10.1016/j.solener.2019.01.032 Search in Google Scholar

[7] Luthander R., Lingfors D., Widén J. Large-scale integration of photovoltaic power in a distribution grid using power curtailment and energy storage. Solar Energy 2017:155:1319–1325. https://doi.org/10.1016/j.solener.2017.07.083 Search in Google Scholar

[8] Alquthami T., Sreerama Kumar R., Al Shaikh A. Mitigation of voltage rise due to high solar PV penetration in Saudi distribution network. Electrical Engineering 2020:102:881–890. Springer-Verlag GmbH Germany. https://doi.org/10.1007/s00202-020-00920-z Search in Google Scholar

[9] Adetokun B. B. Application of large-scale gird-connected solar photovoltaic system for voltage stability improvement of weak national grids. Scientific Reports 2021:11:24526. https://doi.org/10.1038/s41598-021-04300-w872009134972819 Search in Google Scholar

[10] Hu R., Wang W., Wu X., Chen Z., Jing L., Ma W., Zeng G. Coordinated active and reactive power control for distribution networks with high penetrations of photovoltaic systems. Solar Energy 2022:231:809–827. https://doi.org/10.1016/j.solener.2021.12.025 Search in Google Scholar

[11] Zeh A., Müller M., Naumann M., Hesse H. C., Jossen A., Witzmann R. Fundamentals of Using Battery Energy Storage Systems to Provide Primary Control Reserves in Germany. Batteries 2016:2(3). https://doi.org/10.3390/batteries2030029 Search in Google Scholar

[12] Ansari B., Simoes M. G. Distributed Energy Management of PV-Storage Systems for Voltage Rise Mitigation. Technology and Economics of Smart Grids and Sustainable Energy 2017:2:15. https://doi.org/10.1007/s40866-017-0033-6 Search in Google Scholar

[13] Wong L. A., Shareef H., Mohamed A., Ibrahim A. A. Optimal Battery Sizing in Photovoltaic Based Distributed Generation Using Enhanced Opposition-Based Firefly Algorithm for Voltage Rise Mitigation. Scientific World Journal 2014, Article ID 752096. https://doi.org/10.1155/2014/752096409057025054184 Search in Google Scholar

[14] Ai W. L., Shareef H., Ibrahim A. A., Mohamed A. Optimal Battery Placement in Photovoltaic Based Distributed Generation Using Binary Firefly Algorithm for Voltage Rise Mitigation. IEEE International Conference on Power and Energy, 2014.10.1109/PECON.2014.7062432 Search in Google Scholar

[15] Alam M. J. E., Muttaqi K. M., Sutanto D. Community Energy Storage for Neutral Voltage Rise Mitigation in Four- Wire Multigrounded LV Feeders with Unbalanced Solar PV Allocation. IEEE Transactions on Smart Grid, November 2015. https://doi.org/10.1109/TSG.2015.2427872 Search in Google Scholar

[16] Deakin M., McCulloch M. Voltage Regulation of Large Scale PV: A Comparative Case Study. IEEE Manchester PowerTech, Manchester, 2017. https://doi.org/10.1109/PTC.2017.7981021 Search in Google Scholar

[17] Jiandong D., Xinxin W., Jing W., Hao H. Optimal allocation of reactive power compensation in distribution network with high permeability and distributed photovoltaic. 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2018. https://doi.org/10.1109/ICIEA.2018.8397886 Search in Google Scholar

[18] Dorrmann L., Sann-Ferro K., Heininger P., Mähliß J. VDE. Oktober 2021. [Online]. [Accessed 21 February 2022]. Available: https://www.dke.de/resource/blob/933404/dd44d15918ce4d4aefc363a4ef1490e1/kompendium-li-iobatterien-2021-de-data.pdf Search in Google Scholar

[19] Ghosh S., Rahman S. Global Deployment of Solar Photovoltaics: Its Opportunities and Challenges. IEEE PES Innovative Smart Grid Technologies Conference Europe, 2016. https://doi.org/10.1109/ISGTEurope.2016.7856217 Search in Google Scholar

[20] Reimuth A., Locherer V., Danner M., Mauser W. How do changes in climate and consumption loads affect residential PV coupled battery energy systems? Energy 2020:198:117339. https://doi.org/10.1016/j.energy.2020.117339 Search in Google Scholar

[21] MathWorks. 24-hour Simulation of a Vehicle-to-Grid (V2G) System. [Online]. [Accessed 7 December 2021]. Available: https://de.mathworks.com/help/physmod/sps/ug/24-hour-simulation-of-a-vehicle-to-grid-v2gsystem.html Search in Google Scholar

[22] V. d. Elektrizitätswirtschaft, “Repräsentative VDEW-Lastprofile. (V.d. Electricity industry, “Representative VDEW load profiles). [Online]. [Accessed 30 December 2021]. Available: https://www.bdew.de/energie/standardlastprofilestrom/ (In German). Search in Google Scholar

[23] Statistik Austria. (Austrian statistics). [Online]. [Accessed: 17 March 2022]. Available: https://www.statistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/energie_und_umwelt/energie/energieeinsatz_der_haushalte/index.html (In German). Search in Google Scholar

[22] Prochazka P., Cervinka D., Martis J., Cipin R., Vorel P. Li-Ion Battery Deep Discharge Degradation. Transactions of the Electrochemical Society 2016:74(1).10.1149/07401.0031ecst Search in Google Scholar

[23] Hashemifarzad A., Faulstich M., zum Hingst J., Jokari M. Impact of electromobility on the future standard load profile. International Journal of Smart Grid and Clean Energy 2019.10.12720/sgce.8.2.164-173 Search in Google Scholar

[24] Verma S., Bhargava A., Chaudhary V., Bhasin S. Simulation Study of an Isolated Microgrid Consisting Electric Vehicle Charging Station with Penetration of Multiple RESs. 2nd International Conference on Power Energy, Environmental and Intelligent Control, 2019.10.1109/PEEIC47157.2019.8976694 Search in Google Scholar

[25] Mathworks Dokumentation Examples 250-kW Grid Connected PV Array. [Online]. [Accessed 25 May 2022]. Available: https://de.mathworks.com/help/physmod/sps/ug/250-kw-grid-connected-pv-array.html Search in Google Scholar

[25] Heuck K., Dettmann K.-D., Schulz D. Elektrische Energieversorgung. Erzeugung, Übertragung und Verteilung elektrischer Energie für Studium und Praxis. (Electrical energy supply. Generation, transmission and distribution of electrical energy for studies and practice). Hamburg: Springer, 2013. (In German). Search in Google Scholar

[26] MathWorks Documentation Three-Phase RLC Load. [Online]. [Accessed 24 May 2022]. Available: https://de.mathworks.com/help/physmod/sps/powersys/ref/threephaseparallelrlcload.html Search in Google Scholar

[27] Mathworks Documentation Distributed Parameters Line. [Online]. [Accessed 24 May 2022]. Available: https://de.mathworks.com/help/physmod/sps/powersys/ref/distributedparametersline.html Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo